A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications

Yıl: 2019 Cilt: 43 Sayı: 6 Sayfa Aralığı: 551 - 555 Metin Dili: İngilizce DOI: 10.3906/fiz-1909-5 İndeks Tarihi: 12-05-2020

A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications

Öz:
Accelerator-based fourth-generation light sources are utilized in a wide range of interdisciplinary applicationssuch as nanotechnology, materials science, biosciences, and medicine. A hard X-ray free-electron laser (FEL), as astate-of-the-art light source, was optimized using evolutionary algorithms for dedicated user applications such as X-rayRaman scattering (XRS), resonant inelastic X-ray scattering (RIXS), and X-ray emission spectroscopies (XES). Optimalparameter sets were obtained for an in-vacuum planar undulator driven by an 8 GeV electron beam. Performanceparameters of self-amplified spontaneous emission (SASE) operation (i.e. optimized SASE performance parametersthrough evolutionary algorithms) were found to be consistent with operating X-ray FEL facilities around the world. It isshown that FEL characteristics for specific user experiments can be optimized by finding several evolutionary algorithmsolutions within the range of 5 keV to 10 keV.
Anahtar Kelime:

Konular: Fizik, Uygulamalı Fizik, Katı Hal Fizik, Atomik ve Moleküler Kimya Fizik, Akışkanlar ve Plazma Fizik, Nükleer Fizik, Matematik Fizik, Partiküller ve Alanlar
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Tschentscher T, Bressler C, Grünert J, Madsen A, Mancuso A et al. Photon beam transport and scientific instruments at the European XFEL. Applied Sciences 2017; 7 (6): 592. doi: 10.3390/app7060592
  • [2] Pellegrini C, Stöhr J. X-ray free-electron lasers—principles, properties and applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2003; 500 (1-3): 33-40. doi: 10.1016/S0168-9002(03)00739-3
  • [3] Spence JCH, Weierstall U, Chapman HN. X-ray lasers for structural and dynamic biology. Reports on Progress in Physics 2012; 75 (10): 102601. doi: 10.1088/0034-4885/75/10/102601
  • [4] Lee R, Baldis H, Cauble R, Landen O, Wark J et al. Laser and Particle Beams 2002; 20 (3): 527. doi: 10.1017/S0263034602202293
  • [5] Levy A, Audebert P, Shepherd R, Dunn J, Cammarata M et al. The creation of large-volume, gradient-free warm dense matter with an x-ray free-electron laser. Physics of Plasmas 2015; 22 (3): 030703. doi: 10.1063/1.4916103
  • [6] Hämäläinen K, Manninen S. Resonant and non-resonant inelastic x-ray scattering. Journal of Physics: Condensed Matter 2001; 13 (34): 7539. doi: 10.1088/0953-8984/13/34/306
  • [7] Bergmann U, Glatzel P, Cramer SP. Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy. Microchemical Journal 2002; 71 (2-3): 221. doi: 10.1016/S0026- 265X(02)00014-0
  • [8] Petitgirard S, Spiekermann G, Weis C, Sahle C, Sternemann C et al. Miniature diamond anvils for X-ray Raman scattering spectroscopy experiments at high pressure. Journal of Synchrotron Radiation 2017; 24 (1): 276-282. doi: 10.1107/S1600577516017112
  • [9] Ketenoglu D, Spiekermann G, Harder M, Oz E, Koz C et al. X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell. Journal of synchrotron radiation 2018; 25 (2): 537. doi: 10.1107/S1600577518001662
  • [10] Sahle CJ, Sternemann C, Giacobbe C, Yan Y, Weis C et al. Formation of CaB 6 in the thermal decomposition of the hydrogen storage material Ca (BH 4) 2. Physical Chemistry Chemical Physics 2016; 18 (29): 19866-19872. doi: 10.1039/C6CP02495E
  • [11] Szlachetko J, Nachtegaal M, De Boni E, Willimann M, Safonova O et al. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies. Review of Scientific Instruments 2012; 83 (10): 103105. doi: 10.1063/1.4756691
  • [12] Alonso-Mori R, Kern J, Sokaras D, Weng TC, Nordlund D et al. A multi-crystal wavelength dispersive x-ray spectrometer. Review of Scientific Instruments (2012); 83 (7): 073114. doi: 10.1063/1.4737630
  • [13] Weis C, Spiekermann G, Sternemann C, Harder M, Vankó G et al. Combining X-ray Kβ 1, 3, valence-to-core, and X-ray Raman spectroscopy for studying Earth materials at high pressure and temperature: the case of siderite. Journal of Analytical Atomic Spectrometry 2019; 34 (2): 384-393. doi: 10.1039/C8JA00247A
  • [14] Coello CAC, Christiansen AD, Aguirre AH. Towards automated evolutionary design of combinational circuits. Computers & Electrical Engineering 2000; 27 (1): 1-28. doi: 10.1016/S0045-7906(00)00004-5
  • [15] Medhane DV, Sangaiah AK. Search space-based multi-objective optimization evolutionary algorithm. Computers & Electrical Engineering 2017; 58: 126-143. doi: 10.1016/j.compeleceng.2017.01.025
  • [16] Michalewicz Z. Genetic algorithms, numerical optimization, and constraints. In: Proceedings of the Sixth International Conference on Genetic Algorithms; 1995. pp. 1151-158. doi: 10.1.1.14.1880
  • [17] Koç SNK, Köksal A. Wire antennas optimized using genetic algorithm. Computers & Electrical Engineering 2011; 37 (6): 875-885. doi: 10.1016/j.compeleceng.2011.09.014
  • [18] Seada H, Deb K. U-NSGA-III: A unified evolutionary algorithm for single, multiple, and many-objective optimization. COIN Report 2014; 2014022.
  • [19] Eshelman LJ, Schaffer JD. Real-coded genetic algorithms and interval-schemata. Foundations of Genetic Algorithms 1993; 2: 187–202. doi: 10.1016/B978-0-08-094832-4.50018-0
  • [20] Xie M. Design optimization for an X-ray free electron laser driven by SLAC linac. In: Proceedings of the Particle Accelerator Conference; 1995. pp. 183-185. doi: 10.1109/PAC.1995.504603
  • [21] Elleaume P, Chavanne J, Faatz B. Design considerations for a 1 Å SASE undulator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2000; 455 (3): 503-523. doi: 10.1016/S0168-9002(00)00544-1
APA KETENOĞLU D, Bostanci G, AYDIN A, Ketenoglu B (2019). A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. , 551 - 555. 10.3906/fiz-1909-5
Chicago KETENOĞLU Didem,Bostanci Gazi Erkan,AYDIN Ayhan,Ketenoglu Bora A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. (2019): 551 - 555. 10.3906/fiz-1909-5
MLA KETENOĞLU Didem,Bostanci Gazi Erkan,AYDIN Ayhan,Ketenoglu Bora A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. , 2019, ss.551 - 555. 10.3906/fiz-1909-5
AMA KETENOĞLU D,Bostanci G,AYDIN A,Ketenoglu B A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. . 2019; 551 - 555. 10.3906/fiz-1909-5
Vancouver KETENOĞLU D,Bostanci G,AYDIN A,Ketenoglu B A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. . 2019; 551 - 555. 10.3906/fiz-1909-5
IEEE KETENOĞLU D,Bostanci G,AYDIN A,Ketenoglu B "A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications." , ss.551 - 555, 2019. 10.3906/fiz-1909-5
ISNAD KETENOĞLU, Didem vd. "A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications". (2019), 551-555. https://doi.org/10.3906/fiz-1909-5
APA KETENOĞLU D, Bostanci G, AYDIN A, Ketenoglu B (2019). A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. Turkish Journal of Physics, 43(6), 551 - 555. 10.3906/fiz-1909-5
Chicago KETENOĞLU Didem,Bostanci Gazi Erkan,AYDIN Ayhan,Ketenoglu Bora A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. Turkish Journal of Physics 43, no.6 (2019): 551 - 555. 10.3906/fiz-1909-5
MLA KETENOĞLU Didem,Bostanci Gazi Erkan,AYDIN Ayhan,Ketenoglu Bora A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. Turkish Journal of Physics, vol.43, no.6, 2019, ss.551 - 555. 10.3906/fiz-1909-5
AMA KETENOĞLU D,Bostanci G,AYDIN A,Ketenoglu B A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. Turkish Journal of Physics. 2019; 43(6): 551 - 555. 10.3906/fiz-1909-5
Vancouver KETENOĞLU D,Bostanci G,AYDIN A,Ketenoglu B A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications. Turkish Journal of Physics. 2019; 43(6): 551 - 555. 10.3906/fiz-1909-5
IEEE KETENOĞLU D,Bostanci G,AYDIN A,Ketenoglu B "A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications." Turkish Journal of Physics, 43, ss.551 - 555, 2019. 10.3906/fiz-1909-5
ISNAD KETENOĞLU, Didem vd. "A hard X-ray self-amplified spontaneous emission free-electron laser optimization using evolutionary algorithms for dedicated user applications". Turkish Journal of Physics 43/6 (2019), 551-555. https://doi.org/10.3906/fiz-1909-5