Yıl: 2019 Cilt: 49 Sayı: 4 Sayfa Aralığı: 1054 - 1067 Metin Dili: İngilizce DOI: 10.3906/sag-1812-143 İndeks Tarihi: 12-05-2020

Anticipatory effect of execution on observation: an approach using ExoPinch finger robot

Öz:
Background/aim: This study aims to explore the mirror neuron system (MNS) involvement using mu (8–12 Hz)/beta (15–25 Hz) bandsuppression in an action observation-execution paradigm.Materials and methods: Electrophysiological (EEG) data from 16 electrodes were recorded while 8 participants observed video clips ofa hand squeezing a spring. Specifically, the effect of anticipated execution on observation was studied. For this purpose, a fully actuatedfinger exoskeleton robot was utilized to synchronize observation and execution and to control the execution condition for the participants. Anticipatory effect was created with a randomized robot accompany session.Results: The results showed that the observational condition (with or without anticipation) interacted with hemisphere at central channels near somatosensory cortex. Additionally, we explored the response of MNS on the kinetics features of visual stimuli (hard or softspring).Conclusion: The results showed an interaction effect of kinetics features and hemisphere at frontal channels corresponding nearly tothe ventral premotor cortex area of the brain. The activation of mirror neurons in this area plays a crucial role in observational learning.Based on our results, we propose that specific type of visual stimuli can be combined with the functional abilities of the MNS in the action observation based treatment of hand motor dysfunction of stroke patients to have a positive additional impact.
Anahtar Kelime:

Konular: Cerrahi
Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. De Vignemont F, Haggard P. Action observation and execution: what is shared? Society for Neuroscience 2008; 3 (3-4): 421-433.
  • 2. Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel, G. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabilitation Neural Repair 2017; 31(2): 107-121.
  • 3. Avanzini P, Fabbri-Destro M, Dalla Volta R, Daprati E, Rizzolatti G et al. The dynamics of sensorimotor cortical oscillations during the observation of hand movements: an EEG study. PLoS One 2012; 7 (5): e37534.
  • 4. Ertelt D, Small S, Solodkin A, Dettmers C, McNamara A et al. Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage, 2007; 36 Suppl 2: T164-173.
  • 5. Small SL, Buccino G, Solodkin A. Brain repair after stroke--a novel neurological model. Nature Reviews Neurology 2013; 9 (12): 698-707.
  • 6. Gallese V, Fadiga L, Fogassi L, Rizzolatti G. Action recognition in the premotor cortex. Brain 1996; 119 (Pt 2): 593-609.
  • 7. Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Brain Research. Cognitive Brain Research 1996; 3 (2): 131-141.
  • 8. Pineda JA. Sensorimotor cortex as a critical component of an ‘extended’ mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring? Behavioral and Brain Functions 2008; 4: 47.
  • 9. Gallese V, Goldman A. Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences 1998; 2 (12): 493-501.
  • 10. Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC et al. Grasping the intentions of others with one’s own mirror neuron system. PLoS Biology 2005; 3 (3): e79.
  • 11. Kantak SS, Stinear JW, Buch ER, Cohen LG. Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabilitation and Neural Repair 2012; 26 (3): 282-292.
  • 12. Stefan K, Cohen LG, Duque J, Mazzocchio R, Celnik P et al. Formation of a motor memory by action observation. Journal of Neuroscience 2005; 25 (41): 9339-9346.
  • 13. Mattar AA, Gribble PL. Motor learning by observing. Neuron 2005; 46 (1): 153-160.
  • 14. Porro CA, Facchin P, Fusi S, Dri G, Fadiga L. Enhancement of force after action observation: behavioural and neurophysiological studies. Neuropsychologia 2007; 45 (13): 3114-3121.
  • 15. Fadiga L, Fogassi L, Pavesi G, Rizzolatti G. Motor facilitation during action observation: a magnetic stimulation study. Journal of Neurophysiology 1995; 73 (6): 2608-2611.
  • 16. Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proceedings of the National Academy of Sciences of the United States of America 1998; 95 (25): 15061-15065.
  • 17. Buccino G. Action observation treatment: a novel tool in neurorehabilitation. Philosophical Transactions of the Royal Society B: Biological Sciences 2014; 369 (1644): 20130185.
  • 18. Buccino G, Lui F, Canessa N, Patteri I, Lagravinese G, Benuzzi F, Porro CA, Rizzolatti G. Neural circuits involved in the recognition of actions performed by nonconspecifics: an FMRI study. Journal of Cognitive Neuroscience 2004; 16 (1): 114-126.
  • 19. Calvo-Merino B, Glaser DE, Grezes J, Passingham RE, Haggard P. Action observation and acquired motor skills: an FMRI study with expert dancers. Cerebral Cortex, 2005; 15 (8): 1243- 1249.
  • 20. De Havas J, Ghosh A, Gomi H, Haggard P. Sensorimotor organization of a sustained involuntary movement. Frontiers in Behavioral Neuroscience 2015:9:185.
  • 21. Pomeroy VM, Clark CA, Miller JS, Baron JC, Markus HS, Tallis RC. The potential for utilizing the “mirror neurone system” to enhance recovery of the severely affected upper limb early after stroke: a review and hypothesis. Neurorehabilitation and Neural Repair 2005;19 (1): 4-13.
  • 22. Celnik P, Webster B, Glasser DM, Cohen LG. Effects of action observation on physical training after stroke. Stroke 2008; 39 (6): 1814-1820.
  • 23. Gangitano M, Mottaghy FM, Pascual-Leone A. Phase-specific modulation of cortical motor output during movement observation. Neuroreport 2001;12 (7),:1489-1492.
  • 24. Maeda F, Kleiner-Fisman G, Pascual-Leone A. Motor facilitation while observing hand actions: specificity of the effect and role of observer’s orientation. Journal of Neurophysiology 232. Muthukumaraswamy SD, Johnson BW. Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology 2004; 41 (1): 152-156.
  • 25. Arias P, Robles-Garcia V, Espinosa N, Corral-Bergantinos Y, Mordillo-Mateos L, Grieve K, Oliviero A, Cudeiro J. The effects of expectancy on corticospinal excitability: passively preparing to observe a movement. Journal of Neurophysiology 2014; 111 (7): 1479-1486.
  • 26. Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. Understanding motor events: a neurophysiological study. Experimental Brain Research 1992; 91 (1): 176-180.
  • 27. Jeannerod M, Decety J. Mental motor imagery: a window into the representational stages of action. Current Opinion in Neurobiology 1995; 5 (6): 727-732.
  • 28. Duclos Y, Schmied A, Burle B, Burnet H. Rossi-Durand C. Anticipatory changes in human motoneuron discharge patterns during motor preparation. Journal of Physiology 2008; 586 (4): 1017-1028.
  • 29. Mellah S, Rispal-Padel L, Riviere G. Changes in excitability of motor units during preparation for movement. Exp Brain Res 1990; 82 (1): 178-186.
  • 30. Rizzolatti G, Craighero L. The mirror-neuron system. Annual Review of Neuroscience, 2004; 27: 169-192.
  • 31. McFarland DJ, McCane LM, David SV, Wolpaw JR. Spatial filter selection for EEG-based communication. Electroencephalography and Clinical Neurophysiology 1997; 103 (3): 386-394.
  • 32. Muthukumaraswamy SD, Johnson BW. Changes in rolandic mu rhythm during observation of a precision grip. Psychophysiology 2004; 41 (1): 152-156.
  • 33. Pfurtscheller G, Neuper C, Andrew C, Edlinger G. Foot and hand area mu rhythms. International Journal of Psychophysiology 1997; 26 (1-3): 121-135.
  • 34. Pineda JA. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Research Reviews 2005; 50 (1): 57-68.
  • 35. Fox NA, Bakermans-Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN et al. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin 2016; 142 (3): 291-313.
  • 36. McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogragphy 2000; 12 (3): 177-186.
  • 37. Pfurtscheller G, Neuper C. Motor imagery activates primary sensorimotor area in humans. Neuroscinece Letters 1997; 239 (2-3): 65-68.
  • 38. Peirce JW. PsychoPy--Psychophysics software in Python. Journal of Neuroscience Methods 2007; 162 (1-2): 8-13.
  • 39. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods 2004; 134 (1): 9-21.
  • 40. Gazzola V, Rizzolatti G, Wicker B, Keysers C. The anthropomorphic brain: the mirror neuron system responds to human and robotic actions. Neuroimage 2007; 35 (4): 1674-1684.
  • 41. Rizzolatti G, Fabbri-Destro M, Cattaneo L. Mirror neurons and their clinical relevance. Nature Reviews Neurology 2009; 5 (1): 24-34.
  • 42. Alaerts K, Senot P, Swinnen SP, Craighero L, Wenderoth N et al. Force requirements of observed object lifting are encoded by the observer’s motor system: a TMS study. European Journal of Neuroscience 2010; 31 (6): 1144-1153.
  • 43. Arnstein D, Cui F, Keysers C, Maurits NM, Gazzola V. Musuppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices. Journal of Neuroscience 2011; 31 (40): 14243-14249.
  • 44. Hendrix CM, Mason CR, Ebner TJ. Signaling of grasp dimension and grasp force in dorsal premotor cortex and primary motor cortex neurons during reach to grasp in the monkey. Journal of Neurophysiology 2009; 102 (1): 132-145.
  • 45. Hepp-Reymond M, Kirkpatrick-Tanner M, Gabernet L, Qi HX, Weber B. Context-dependent force coding in motor and premotor cortical areas. Experimental Brain Research 1999; 128 (1-2): 123-133.
  • 46. Craighero L, Zorzi V, Canto R, Franca M. Same kinematics but different 532 objects during action observation: Detection times and motor evoked potentials. Visual Cognition 2014; 22 (15): 653-671,
  • 47. Oberman LM, McCleery JP, Ramachandran VS, Pineda JA. EEG evidence for mirror neuron activity during the observation of human and robot actions: Toward an analysis of the human qualities of interactive robots, Neurocomputing 2007; 70 (13): 2194-2203.
  • 48. Cochin S, Barthelemy C, Roux S, Martineau J. Observation and execution of movement: similarities demonstrated by quantified electroencephalography. European Journal of Neuroscience 1999; 11 (5): 1839-1842.
  • 49. Fox NA, Bakermans-Kranenburg MJ, Yoo KH, Bowman LC, Cannon EN et al. Assessing human mirror activity with EEG mu rhythm: A meta-analysis. Psychological Bulletin 2016; 142 (3): 291-313.
  • 50. Dassonville P, Lewis SM, Zhu XH, Ugurbil K. Kim SG et al. Effects of movement predictability on cortical motor activation. Neuroscience Research 1998; 32 (1): 65-74.
  • 51. Alexander GE, Crutcher MD. Preparation for movement: neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology 1990; 64 (1): 133- 150.
  • 52. Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience 2001; 13 (2): 400-404.
  • 53. Ertelt D, Binkofski F. Action observation as a tool for neurorehabilitation to moderate motor deficits and aphasia following stroke. Neural Regeneration Research 2012; 7 (26): 2063-2074.002; 87 (3): 1329-1335.
APA Arikan K, ZADEH H, TURGUT A, ZINNUROGLU M, BAYER G, günendi z, Cengiz B (2019). Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. , 1054 - 1067. 10.3906/sag-1812-143
Chicago Arikan Kutluk Bilge,ZADEH Hassan Gol Mohammad,TURGUT ALİ EMRE,ZINNUROGLU MURAT,BAYER Gözde,günendi zafer,Cengiz Bülent Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. (2019): 1054 - 1067. 10.3906/sag-1812-143
MLA Arikan Kutluk Bilge,ZADEH Hassan Gol Mohammad,TURGUT ALİ EMRE,ZINNUROGLU MURAT,BAYER Gözde,günendi zafer,Cengiz Bülent Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. , 2019, ss.1054 - 1067. 10.3906/sag-1812-143
AMA Arikan K,ZADEH H,TURGUT A,ZINNUROGLU M,BAYER G,günendi z,Cengiz B Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. . 2019; 1054 - 1067. 10.3906/sag-1812-143
Vancouver Arikan K,ZADEH H,TURGUT A,ZINNUROGLU M,BAYER G,günendi z,Cengiz B Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. . 2019; 1054 - 1067. 10.3906/sag-1812-143
IEEE Arikan K,ZADEH H,TURGUT A,ZINNUROGLU M,BAYER G,günendi z,Cengiz B "Anticipatory effect of execution on observation: an approach using ExoPinch finger robot." , ss.1054 - 1067, 2019. 10.3906/sag-1812-143
ISNAD Arikan, Kutluk Bilge vd. "Anticipatory effect of execution on observation: an approach using ExoPinch finger robot". (2019), 1054-1067. https://doi.org/10.3906/sag-1812-143
APA Arikan K, ZADEH H, TURGUT A, ZINNUROGLU M, BAYER G, günendi z, Cengiz B (2019). Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. Turkish Journal of Medical Sciences, 49(4), 1054 - 1067. 10.3906/sag-1812-143
Chicago Arikan Kutluk Bilge,ZADEH Hassan Gol Mohammad,TURGUT ALİ EMRE,ZINNUROGLU MURAT,BAYER Gözde,günendi zafer,Cengiz Bülent Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. Turkish Journal of Medical Sciences 49, no.4 (2019): 1054 - 1067. 10.3906/sag-1812-143
MLA Arikan Kutluk Bilge,ZADEH Hassan Gol Mohammad,TURGUT ALİ EMRE,ZINNUROGLU MURAT,BAYER Gözde,günendi zafer,Cengiz Bülent Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. Turkish Journal of Medical Sciences, vol.49, no.4, 2019, ss.1054 - 1067. 10.3906/sag-1812-143
AMA Arikan K,ZADEH H,TURGUT A,ZINNUROGLU M,BAYER G,günendi z,Cengiz B Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. Turkish Journal of Medical Sciences. 2019; 49(4): 1054 - 1067. 10.3906/sag-1812-143
Vancouver Arikan K,ZADEH H,TURGUT A,ZINNUROGLU M,BAYER G,günendi z,Cengiz B Anticipatory effect of execution on observation: an approach using ExoPinch finger robot. Turkish Journal of Medical Sciences. 2019; 49(4): 1054 - 1067. 10.3906/sag-1812-143
IEEE Arikan K,ZADEH H,TURGUT A,ZINNUROGLU M,BAYER G,günendi z,Cengiz B "Anticipatory effect of execution on observation: an approach using ExoPinch finger robot." Turkish Journal of Medical Sciences, 49, ss.1054 - 1067, 2019. 10.3906/sag-1812-143
ISNAD Arikan, Kutluk Bilge vd. "Anticipatory effect of execution on observation: an approach using ExoPinch finger robot". Turkish Journal of Medical Sciences 49/4 (2019), 1054-1067. https://doi.org/10.3906/sag-1812-143