Yıl: 2019 Cilt: 4 Sayı: 3 Sayfa Aralığı: 348 - 357 Metin Dili: Türkçe DOI: 10.5336/healthsci.2018-61638 İndeks Tarihi: 21-05-2020

Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü

Öz:
Otizm spektrum bozukluğu (OSB), günümüzde oldukça yaygın görülen nörogelişimsel birhastalıktır. Genetik, biyolojik ve çevresel faktörlerin hastalık gelişiminde rolü olduğu düşünülmektedir. Yapılan çalışmalar, çevresel kirleticilere maruziyetin genetik duyarlılığı olan bireylerdenörogelişimsel bozukluk riskinin artmasında rol oynayabileceğini göstermiştir. Endokrin bozucubileşikler, bu çevresel kirleticilerin önemli bir bölümünü oluşturmaktadır. Endokrin bozucular kısaca, “Vücutta görev yapan hormonların metabolizmasını etkileyen kimyasal maddeler” olarak tanımlanmıştır. Özellikle cıva, kurşun, bisfenol A, fitalatlar gibi çevresel toksik maddelere maruzkalmanın OSB riskinin artışı ile ilişkili olabileceği ileri sürülmektedir. Özellikle prenatal ve perinatal dönemdeki maruziyetin ciddi risk oluşturduğu öne sürülmüştür. Bu çalışmada, literatürdeOSB gelişim riski ile ilişkilendirilmiş endokrin bozuculardan bisfenol A, fitalatlar, dioksinler, poliklorlu bifeniller ve ağır metallerin OSB gelişimindeki potansiyel rollerinin tartışılması amaçlanmıştır.
Anahtar Kelime:

Konular: Beslenme ve Diyetetik Sağlık Politikaları ve Hizmetleri Geriatri ve Gerontoloji Sağlık Bilimleri ve Hizmetleri Odyoloji ve Konuşma-Dil Patolojisi

The Role of Endocrine Disruptors in Autism Spectrum Disorder

Öz:
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is common today. Genetic, biological and environmental factors are thought to play a role in ASD development. Studies have shown that exposure to environmental pollutants may play a role in increasing the risk of neurodevelopmental disorder in genetically susceptible individuals. Endocrine disrupting compounds are an important part of these environmental pollutants. Endocrine disruptors are briefly described as “Chemical substances that affect the metabolism of hormones acting in the body”. In particular, exposure to environmental toxic substances such as mercury, lead, bisphenol A, phthalates may be associated with an increase in ASD risk. It has been suggested that exposure in the prenatal and perinatal period poses a serious risk. In this review, the potential roles of endocrine disruptors bisphenol A, phthalates, dioxins, polychlorinated biphenyls and heavy metals in the development of ASD have been discussed.
Anahtar Kelime:

Konular: Beslenme ve Diyetetik Sağlık Politikaları ve Hizmetleri Geriatri ve Gerontoloji Sağlık Bilimleri ve Hizmetleri Odyoloji ve Konuşma-Dil Patolojisi
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. American Psychiatric Association. Ruhsal Bozuklukların Tanısal ve Sayımsal El KitabıDSM-IV-TR. Köroğlu E, çeviri editörü. 2. baskı. Ankara: Hekimler Yayın Birliği; 2005. p.344.
  • 2. World Health Organization (WHO). The ICD10 Classification of Mental and Behavioural Disorders. Geneva: WHO; 1993. p.263. http://www.who.int/classifications/icd/en/GRNBOOK.pdf
  • 3. American Psychiatric Association. DSM-5 Ruhsal Bozuklukların Tanısal ve Sayımsal El Kitabı. Köroğlu E, çeviri editörü. 5. baskı. Ankara: Hekimler Yayın Birliği; 2013. p.396.
  • 4. Bryn V, Aass HC, Skjeldal OH, Isaksen J, Saugstad OD, Ormstad H. Cytokine profile in autism spectrum disorders in children. J Mol Neurosci. 2017;61(1):1-7. [Crossref] [PubMed]
  • 5. Ye BS, Leung AOW, Wong MH. The association of environmental toxicants and autism spectrum disorders in children. Environ Pollut. 2017;227:234-42. [Crossref] [PubMed]
  • 6. Hu VW. From genes to environment: using integrative genomics to build a “systems level” understanding of autism spectrum disorders. Child Dev. 2013;84(1):89-103. [Crossref] [PubMed] [PMC]
  • 7. LaSalle JM. Epigenomic strategies at the interface of genetic and environmental risk factors for autism. J Hum Genet. 2013;58(7): 396-401. [Crossref] [PMC]
  • 8. Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M. How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxicology. 2008;29(1):190-201. [Crossref] [PubMed]
  • 9. Braun JM. Endocrine disrupting compounds, gonadal hormones, and autism. Dev Med Child Neurol. 2012;54(11):1068. [Crossref] [PubMed]
  • 10. Rebuli ME, Patisaul HB. Assessment of sex specific endocrine disrupting effects in the prenatal and pre-pubertal rodent brain. J Steroid Biochem Mol Biol. 2016;160:148-59. [Crossref] [PubMed] [PMC]
  • 11. Schug TT, Blawas AM, Gray K, Heindel JJ, Lawler CP. Elucidating the links between endocrine disruptors and neurodevelopment. Endocrinology. 2015;156(6):1941-51. [Crossref] [PubMed] [PMC]
  • 12. Preciados M, Yoo C, Roy D. Estrogenic endocrine disrupting chemicals influencing NRF1 regulated gene networks in the development of complex human brain diseases. Int J Mol Sci. 2016;17(12):1-62. [Crossref] [PMC]
  • 13. Moosa A, Shu H, Sarachana T, Hu VW. Are endocrine disrupting compounds environmental risk factors for autism spectrum disorder? Horm Behav. 2018;101:13-21. [Crossref] [PubMed] [PMC]
  • 14. Kavlock RJ, Daston GR, DeRosa C, FennerCrisp P, Gray LE, Kaattari S, et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect. 1996;104 Suppl 4:715-40. [Crossref] [PubMed] [PMC]
  • 15. Kortenkamp A, Martin O, Faust M, Evans R, McKinlay R, Orton F, et al. State of the art assessment of endocrine disrupters. Final Report Project. European Commission, Directorate-General for the Environment (Project Contract No.070307/2009/550687/SER/D3); 2011. p.135. Erişim Tarihi: 01.05.2018. [Crossref]
  • 16. Solecki R, Kortenkamp A, Bergman Å, Chahoud I, Degen GH, Dietrich D, et al. Scientific principles for the identification of endocrinedisrupting chemicals: a consensus statement. Arch Toxicol. 2017;91(2):1001-6. [Crossref] [PubMed] [PMC]
  • 17. Çetinkaya S. [Endocrine disruptors and their effects on puberty]. Dicle Tıp Dergisi. 2009;36(1):59-66.
  • 18. Goldman LR. New approaches for assessing the etiology and risk sor developmental abnormalities from chemical exposure. Reprod Toxicol. 1997;11(2-3):443-51. [Crossref]
  • 19. Grün F, Blumberg B. Endocrine disruptors as obesogens. Mol Cell Endocrinol. 2009;304(1- 2):19-29. [Crossref] [PubMed] [PMC]
  • 20. Grün F. Obesogens. Cur Opin Endocr Diabetes Obes. 2010;17(5):453-9. [Crossref] [PubMed]
  • 21. Caliman FA, Gavrilescu M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment-a review. Clean-Soil Air Water. 2009;37(4-5):277-303. [Crossref]
  • 22. Casals-Casas C, Desvergne B. Endocrine disruptors: from endocrine to metabolic disruption. Annu Rev Physiol. 2011;73:135-62. [Crossref] [PubMed]
  • 23. U.S. Food and Drug Administration (FDA). Bisphenol A (BPA): use in food contact application. Access Date: 01.01.2018. [Crossref]
  • 24. Cichna-Markl M. Sample clean-up by sol-gel immunoaffinity chromatography for the determination of bisphenol A in food and urine. Methods. 2012;56(2):186-91. [Crossref] [PubMed]
  • 25. Zoeller RT, Bansal R, Parris C. Bisphenol-A, an environmental contaminant that acts as a thyroid hormone receptor antagonist in vitro, increases serum thyroxine, and alters rc3/neurogranin expression in the developing rat brain. Endocrinology. 2005;146(2):607-12. [Crossref] [PubMed]
  • 26. Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Environ Health Perspect. 2010; 118(8):1055-70. [Crossref] [PubMed] [PMC]
  • 27. Stahlhut RW, Welshons WV, Swan SH. Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect. 2009;117(5):784-9. [Crossref] [PubMed] [PMC]
  • 28. Xu XH, Zhang J, Wang YM, Ye YP, Luo QQ. Perinatal exposure to bisphenol-A impairs learning-memory by concomitant down-regulation of N-methyl-D-aspartate receptors of hippocampus in male offspring mice. Horm Behav. 2010;58(2):326-33. [Crossref] [PubMed]
  • 29. Saili KS, Corvi MM, Weber DN, Patel AU, Das SR, Przybyla J, et al. Neurodevelopmental low-dose bisphenol A exposure leads to early life-stage hyperactivity and learning deficits in adult zebrafish. Toxicology. 2012;291(1-3):83- 92. [Crossref] [PubMed] [PMC]
  • 30. Wolstenholme JT, Goldsby JA, Rissman EF. Transgenerational effects of prenatal bisphenol A on social recognition. Horm Behav. 2013;64(5):833-9. [Crossref] [PubMed] [PMC]
  • 31. Wolstenholme JT, Edwards M, Shetty SR, Gatewood JD, Taylor JA, Rissman EF, et al. Gestational exposure to bisphenol A produces transgenerational changes in behaviors and gene expression. Endocrinology. 2012;153(8): 3828-38. [Crossref] [PubMed] [PMC]
  • 32. Miyagawa K, Narita M, Narita M, Akama H, Suzuki T. Memory impairment associated with a dysfunction of the hippocampal cholinergic system induced by prenatal and neonatal exposures to bisphenol-A. Neurosci Lett. 2007;418(3):236-41. [Crossref] [PubMed]
  • 33. Narita M, Miyagawa K, Mizuo K, Yoshida T, Suzuki T. Prenatal and neonatal exposure to low-dose of bisphenol-A enhance the morphine-induced hyperlocomotion and rewarding effect. Neurosci Lett. 2006;402(3):249-52. [Crossref] [PubMed]
  • 34. Wolstenholme JT, Rissman EF, Connelly JJ. The role of bisphenol A in shaping the brain, epigenome and behavior. Horm Behav. 2011;59(3):296-305. [Crossref] [PubMed] [PMC]
  • 35. Harley KG, Gunier RB, Kogut K, Johnson C, Bradman A, Calafat AM, et al. Prenatal and early childhood bisphenol A concentrations and behavior in school-aged children. Environ Res. 2013;126:43-50. [Crossref] [PubMed] [PMC]
  • 36. Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect. 2009;117(12):1945-52. [Crossref] [PubMed] [PMC]
  • 37. Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN, et al. Impact of early-life bisphenol A exposure on behavior and executive function in children. Pediatrics. 2011;128(5):873-82. [Crossref] [PubMed] [PMC]
  • 38. Stein TP, Schluter MD, Steer RA, Guo L, Ming X. Bisphenol A exposure in children with autism spectrum disorders. Autism Res. 2015;8(3):272-83. [Crossref] [PubMed] [PMC]
  • 39. Kardas F, Bayram AK, Demirci E, Akin L, Ozmen S, Kendirci M, et al. Increased serum phthalates (MEHP, DEHP) and bisphenol A concentrations in children with autism spectrum disorder: the role of endocrine disruptors in autism etiopathogenesis. J Child Neurol. 2016;31(5):629-35. [Crossref] [PubMed]
  • 40. Technical Briefing. Phthalates and Their Alternatives: Health and Environmental Concerns. Massachusetts Lowell: The Lowell Center for Sustainable Production at the University of Massachusetts Lowell; 2011. p.21. Access date: 02.05.2018. [Crossref]
  • 41. Wittassek M, Angerer J. Phthalates: metabolism and exposure. Int Androl. 2008;31(2):131- 8. [Crossref] [PubMed]
  • 42. Zhang Y, Lin L, Cao Y, Chen B, Zheng L, Ge RS. Phthalate levels and low birth weight: a nested case-control study of Chinese newborns. J Pediatr. 2009;15(4):500-4. [Crossref] [PubMed]
  • 43. Albro PW, Corbett JT, Schroeder JL Jordan S, Matthews HB. Pharmacokinetics, interactions with macromolecules and species differences in metabolism of DEHP. Environ Health Perspect. 1982;45:19-25. [Crossref] [PubMed] [PMC]
  • 44. Li L, Zhang T, Qin XS, Ge W, Ma HG, Sun LL, et al. Exposure to diethylhexyl phthalate (DEHP) results in a heritable modification of imprint genes DNA methylation in mouse oocytes. Mol Biol Rep. 2014;41(3):1227-35. [Crossref] [PubMed]
  • 45. Li Y, Zhuang M, Li T, Shi N. Neurobehavioral toxicity study of dibutyl phthalate on rats following in utero and lactational exposure. J Appl Toxicol. 2009;29(7):603-11. [Crossref] [PubMed]
  • 46. Tanaka T. Reproductive and neurobehavioural effects of bis (2-ethylhexyl) phthalate (DEHP) in a cross-mating toxicity study of mice. Food Chem Toxicol. 2005;43(4):581-9. [Crossref] [PubMed]
  • 47. Ishido M, Masuo Y, Sayato-Suzuki J, Oka S, Niki E, Morita M. Dicyclohexylphthalate causes hyperactivity in the rat concomitantly with impairment of tyrosine hydroxylase immunoreactivity. J Neurochem. 2004;91(1):69- 76. [Crossref] [PubMed]
  • 48. Hoshi H, Ohtsuka T. Adult rats exposed to low-doses of di-n-butyl phthalate during gestation exhibit decreased grooming behavior. Bull Environ Contam Toxicol. 2009;83(1):62-6. [Crossref] [PubMed]
  • 49. Yolton K, Xu Y, Strauss D, Altaye M, Calafat AM, Khoury J. Prenatal exposure to bisphenol A and phthalates and infant neurobehavior. Neurotoxicol Teratol. 2011;33(5):558-66. [Crossref] [PubMed] [PMC]
  • 50. Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, Calafat AM, et al. Prenatal phthalate exposure is associated with childhood behavior and executive functioning. Environ Health Perspect. 2010;118(4):565-71. [Crossref] [PubMed] [PMC]
  • 51. Cho SC, Bhang SY, Hong YC, Shin MS, Kim BN, Kim JW, et al. Relationship between environmental phthalate exposure and the intelligence of school-aged children. Environ Health Perspect. 2010;118(7):1027-32. [Crossref] [PubMed] [PMC]
  • 52. Kim BN, Cho SC, Kim Y, Shin MS, Yoo HJ, Kim JW, et al. Phthalates exposure and attention-deficit/hyperactivity disorder in school-age children. Biol Psychiatry. 2009;66(10):958-63. [Crossref] [PubMed]
  • 53. Miodovnik A, Engel SM, Zhu C, Ye X, Soorya LV, Silva MJ, et al. Endocrine disruptors and childhood social impairment. Neurotoxicology. 2011;32(2):261-7. [Crossref] [PubMed] [PMC]
  • 54. Testa C, Nuti F, Hayek J, De Felice C, Chelli M, Rovero P, et al. Di-(2-ethylhexyl) phthalate and autism spectrum disorders. ASN Neuro. 2012;4(4):223-9. [Crossref] [PubMed] [PMC]
  • 55. Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjödin A, et al. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect. 2014;122(5):513-20. [Crossref] [PubMed] [PMC]
  • 56. de Cock M, Maas YG, van de Bor M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Review. Acta Paediatr. 2012;101(8):811-8. [Crossref] [PubMed]
  • 57. Pessah IN, Seegal RF, Lein PJ, LaSalle J, Yee BK, Van De Water J, et al. Immunologic and neurodevelopmental susceptibilities of autism. Neurotoxicology. 2008;29(3):532-45. [Crossref] [PubMed] [PMC]
  • 58. Wells PG, Mackenzie PI, Chowdhury JR, Guillemette C, Gregory PA, Ishii Y, et al. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab Dispos. 2004;32(3):281-90. [Crossref] [PubMed]
  • 59. Argikar UA, Iwuchukwu OF, Nagar S. Update on tools for evaluation of uridine diphosphoglucuronosyltransferase polymorphisms. Expert Opin Drug Metab Toxicol. 2008;4(7): 879-94. [Crossref] [PubMed]
  • 60. Stein TP, Schluter MD, Steer RA, Ming X. Autism and phthalate metabolite glucuronidation. Autism Dev Disord. 2013;43(11):2677- 85. [Crossref] [PubMed] [PMC]
  • 61. Baytok E, Bingöl NT. [Dioxin: toxin entered in our table and life with our food]. YYU Vet Fak Derg. 2013;24(1):45-9.
  • 62. Yalçın H. [Dioxin and polychlorinated biphenyls]. Turkiye Klinikleri J Food Hyg Technol-Special Topics. 2015;1(1):38-47.
  • 63. Artık N, Şanlıer N, Ceyhun Sezgin A. [Foodborne diseases and risks in food safety]. Gıda Güvenliği ve Mevzuatı. 1. Baskı. Ankara: Detay Yayıncılık; 2017. p.133-75.
  • 64. Mimura J, Yamashita K, Nakamura K, Morita M, Takagi TN, Nakao K, et al. Loss of teratogenic response to 2,3,7,8-tetrachlorodibenzop-dioxin TCDD in mice lacking the Ah (dioxin) receptor. Genes Cells. 1997;2(10):645-54. [Crossref] [PubMed]
  • 65. Hossain A, Tsuchiya S, Minegishi M, Osada M, Ikawa S, Tezuka FA, et al. The Ah receptor is not involved in 2,3,7,8-tetrachlorodibenzo- p-dioxin-mediated apoptosis in human leukemic T cell lines. J Biol Chem. 1998;273(31):19853-8. [Crossref] [PubMed]
  • 66. Çiftçi O. [The investigation of effect mechanism, chemical structure and toxicokinetics properties of dioxins compounds]. İnönü Üniversitesi Tıp Fakültesi Dergisi. 2010;17(4): 413-22.
  • 67. Nishijo M, Kuriwaki J, Hori E, Tawara K, Nakagawa H, Nishijo H. Effects of maternal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on fetal brain growth and motor and behavioral development in offspring rats. Toxicol Lett. 2007;173(1):41-7. [Crossref] [PubMed]
  • 68. Nguyen AT, Nishijo M, Hori E, Nguyen NM, Pham TT, Fukunaga K, et al. Effects of maternal exposure to 2,3,7,8-tetrachlorodibenzop-dioxin on socioemotional behaviors in offspring rats. Environ Health Insights. 2013;7:1-14. [Crossref] [PubMed] [PMC]
  • 69. Weiss B. Vulnerability of children and the developing brain to neurotoxic hazards. Environ Health Perspect. 2000;108 Suppl 3:375-81. [Crossref] [PubMed] [PMC]
  • 70. Tai PT, Nishijo M, Anh NT, Maruzeni S, Nakagawa H, Van Luong H, et al. Dioxin exposure in breast milk and infant neurodevelopment in Vietnam. Occup Environ Med. 2013;70(9): 656-62. [Crossref] [PubMed]
  • 71. Nishijo M, Tai PT, Nakagawa H, Maruzeni S, Anh NTN, Luong HV, et al. Impact of perinatal dioxin exposure on infant growth: a crosssectional and longitudinal studies in dioxin-contaminated areas in Vietnam. PLoS One. 2012;7(7):e40273. [Crossref] [PubMed] [PMC]
  • 72. Pham TT, Nishijo M, Nguyen ATN, Tran NN, Hoang LV, Tran AH, et al. Perinatal dioxin exposure and the neurodevelopment of Vietnamese toddlers at 1 year of age. Sci Total Environ. 2015;536:575-81. [Crossref] [PubMed]
  • 73. Nishijo M, Pham TT, Nguyen AT, Tran NN, Nakagawa H, Hoang LV, et al. 2,3,7,8-tetrachlorodibenzo-p-dioxin in breast milk increases autistic traits of 3-year-old children in Vietnam. Mol Psychiatry. 2014;19(11):1220- 6. [Crossref] [PubMed]
  • 74. Koopman-Esseboom C, Weisglas-Kuperus N, de Ridder MA, Van der Paauw CG, Tuinstra LG, Sauer PJ. Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants’ mental and psychomotor development. Pediatrics. 1996;97(5):700- 6.
  • 75. Nakajima S, Saijo Y, Kato S, Sasaki S, Uno A, Kanagami N, et al. Effects of prenatal exposure to polychlorinated biphenyls and dioxins on mental and motor development in Japanese children at 6 months of age. Environ Heath Perspect. 2006;114(5):773-8. [Crossref] [PubMed] [PMC]
  • 76. Tran NN, Pham TT, Ozawa K, Nishijo M, Nguyen AT, Tran TQ, et al. Impacts of perinatal dioxin exposure on motor coordination and higher cognitive development in Vietnamese preschool children: a five-year followup. PLoS One. 2016;11(1):e0147655. [Crossref] [PubMed] [PMC]
  • 77. Hays LE, Carpenter CD, Petersen SL. Evidence that GABAergic neurons in the preoptic area of the rat brain are targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin during development. Environ Health Perspect. 2002;110 Suppl 3:369-76. [Crossref] [PubMed] [PMC]
  • 78. Shibamoto T, Bjeldanes L. Food contaminants from industrial wastes. In: Taylor SL, ed. Introduction to Food Toxicology. 2nd ed. Cambridge, Massachusetts: Academic Press; 2009. p.181-206.
  • 79. Balcı A, Erkekoğlu P, Koçer Gümüşel B. [Evaluation of relationship between obesity and endocrine disrupting chemicals-II: polychlorinated biphenyls: review]. Turkiye Klinikleri J Pharm Sci. 2015;4(2):50-67. [Crossref]
  • 80. Ahlborg UG, Beck H, Berg M, Birnbaum LS, Dybing E, Hagenmaier H, et al. Air Quality Guidelines-Polychlorinated biphenyls (PCBs). 2nd ed. Copenhagen, Denmark: WHO Regional Office for Europe; 2000. p.1-22. Access Date: 05.05.2018. [Crossref]
  • 81. Töpfer K. Guidelines for the Indentification of PCBs and Materials Containing PCBs. UNEP Chemicals. Geneva, Switzerland: United Nations Environment Programme; 1999. p.40.
  • 82. Carpenter DO. Polychlorinated biphenyls and human health. Int J Occup Med Environ Health. 1998;11(4):291-303.
  • 83. Wayman GA, Bose DD, Yang D, Lesiak A, Bruun D, Impey S, et al. PCB-95 modulates the calcium-dependent signaling pathway responsible for activity-dependent dendritic growth. Environ Health Perspect. 2012;120(7):1003-9. [Crossref] [PubMed] [PMC]
  • 84. Boix J, Cauli O. Alteration of serotonin system by polychlorinated biphenyls exposure. Neurochem Int. 2012;60(8):809-16. [Crossref] [PubMed]
  • 85. Plusquellec P, Muckle G, Dewailly E, Ayotte P, Bégin G, Desrosiers C, et al. The relation of environmental contaminants exposure to behavioral indicators in Inuit preschoolers in Arctic Quebec. Neurotoxicology. 2010;31(1): 17-25. [Crossref]
  • 86. DeSoto MC. Ockham’s Razor and autism: the case for developmental neurotoxins contributing to a disease of neurodevelopment. Neurotoxicology. 2009;30(3):331-7. [Crossref] [PubMed]
  • 87. Järup L. Hazards of heavy metal contamination. Br Med Bull. 2003;68:167-82. [Crossref] [PubMed]
  • 88. Jaishankar M, Mathew BB, Shah MS, Murthy K, Gowda KRS. Biosorption of few heavy metal ions using agricultural wastes. Journal of Environment Pollution and Human Health. 2014;2(1):1-6.
  • 89. Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett. 2010;8(3):199- 216. [Crossref]
  • 90. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7(2):60-72. [Crossref] [PubMed] [PMC]
  • 91. Guha Mazumder DN. Chronic arsenic toxicity & human health. Indian J Med Res. 2008;128(4):436-47.
  • 92. Saha JC, Dikshit AK, Bandyopadhyay M, Saha KC. A review of arsenic poisoning and its eff ects on human health. Crit Rev Env Sci Technol. 1999;29(3):281-313. [Crossref]
  • 93. Sharma P, Dubey RS. Lead toxicity in plants. Brazilian Journal of Plant Physiology. 2005;17(1):35-52. [Crossref]
  • 94. Thürmer K, Williams E, Reutt-Robey J. Autocatalytic oxidation of lead crystallite surfaces. Science. 2002;297(5589):2033-5. [Crossref] [PubMed]
  • 95. Ayaz A. Yurttagül M. Çevresel kirleticiler. Besinlerdeki Toksik Öğeler II. 2. Baskı. Ankara: Sağlık Bakanlığı Yayınları; 2012. p.8- 13.
  • 96. Chen CW, Chen CF, Dong CD. Distribution and accumulation of mercury in sediments of Kaohsiung River Mouth, Taiwan. APCBEE Procedia. 2012;1:153-8. [Crossref]
  • 97. Türközü D, Şanlıer N. [Current overview: heavy metal contamination of food]. Selçuk Tarım ve Gıda Bilimleri Dergisi. 2012;26(4):73-80.
  • 98. Sharma SK, Goloubinoff P, Christen P. Heavy metal ions are potent inhibitors of protein folding. Biochem Biophys Res Commun. 2008;372(2):341-5. [Crossref] [PubMed]
  • 99. Iavicoli I, Fontana L, Bergamaschi A. The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev. 2009;12(3):206-23. [Crossref] [PubMed]
  • 100. Hu H, Téllez-Rojo MM, Bellinger D, Smith D, Ettinger AS, Lamadrid-Figueroa H, et al. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ Health Perspect. 2006;114(11):1730-5. [Crossref] [PubMed] [PMC]
  • 101. World Health Organization (WHO). State of the Science of Endocrine Disrupting Chemicals-2012. Geneva: WHO Press; p.296. Access Date: 01.01.2018. [Crossref]
  • 102. James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet. 2006;141B(8):947-56. [Crossref] [PMC]
  • 103. James SJ, Melnyk S, Fuchs G, Reid T, Jernigan S, Pavliv O, et al. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr. 2009;89(1):425-30. [Crossref] [PubMed] [PMC]
  • 104. Adams JB, Romdalvik J, Levine KE, Hu LW. Mercury in first-cut baby hair of children with autism versus typically-developing children. Toxicol Environ Chem. 2008;90(4):739-53. [Crossref]
  • 105. El Baz Mohamed F, Zaky EA, Bassuoni ElSayed A, Elhossieny RE, Zahra SS, Eldin WS, et al. Assessment of hair aluminum, lead, and mercury in a sample of autistic Egyptian children: environmental risk factors of heavy metals in autism. Behav Neurol. 2015;3:1-9. [Crossref] [PubMed] [PMC]
  • 106. Dickerson AS, Rahbar MH, Bakian AV, Bilder DA, Harrington RA, Pettygrove S, et al. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. Environ Monit Assess. 2016;188(7):407. [Crossref] [PubMed]
  • 107. Kim KN, Kwon HJ, Hong YC. Low-level lead exposure and autistic behaviors in school-age children. Neurotoxicology. 2016;53:193-200. [Crossref] [PubMed]
  • 108. Mostafa GA, Bjørklund G, Urbina MA, AlAyadhi LY. The positive association between elevated blood lead levels and brain-specific autoantibodies in autistic children from low lead-polluted areas. Metab Brain Dis. 2016;31(5):1047-54. [Crossref] [PubMed]
APA AYTEKİN ŞAHİN G (2019). Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. , 348 - 357. 10.5336/healthsci.2018-61638
Chicago AYTEKİN ŞAHİN Gizem Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. (2019): 348 - 357. 10.5336/healthsci.2018-61638
MLA AYTEKİN ŞAHİN Gizem Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. , 2019, ss.348 - 357. 10.5336/healthsci.2018-61638
AMA AYTEKİN ŞAHİN G Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. . 2019; 348 - 357. 10.5336/healthsci.2018-61638
Vancouver AYTEKİN ŞAHİN G Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. . 2019; 348 - 357. 10.5336/healthsci.2018-61638
IEEE AYTEKİN ŞAHİN G "Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü." , ss.348 - 357, 2019. 10.5336/healthsci.2018-61638
ISNAD AYTEKİN ŞAHİN, Gizem. "Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü". (2019), 348-357. https://doi.org/10.5336/healthsci.2018-61638
APA AYTEKİN ŞAHİN G (2019). Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. Türkiye Klinikleri Sağlık Bilimleri Dergisi, 4(3), 348 - 357. 10.5336/healthsci.2018-61638
Chicago AYTEKİN ŞAHİN Gizem Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. Türkiye Klinikleri Sağlık Bilimleri Dergisi 4, no.3 (2019): 348 - 357. 10.5336/healthsci.2018-61638
MLA AYTEKİN ŞAHİN Gizem Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. Türkiye Klinikleri Sağlık Bilimleri Dergisi, vol.4, no.3, 2019, ss.348 - 357. 10.5336/healthsci.2018-61638
AMA AYTEKİN ŞAHİN G Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. Türkiye Klinikleri Sağlık Bilimleri Dergisi. 2019; 4(3): 348 - 357. 10.5336/healthsci.2018-61638
Vancouver AYTEKİN ŞAHİN G Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü. Türkiye Klinikleri Sağlık Bilimleri Dergisi. 2019; 4(3): 348 - 357. 10.5336/healthsci.2018-61638
IEEE AYTEKİN ŞAHİN G "Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü." Türkiye Klinikleri Sağlık Bilimleri Dergisi, 4, ss.348 - 357, 2019. 10.5336/healthsci.2018-61638
ISNAD AYTEKİN ŞAHİN, Gizem. "Otizm Spektrum Bozukluğunda Endokrin Bozucuların Rolü". Türkiye Klinikleri Sağlık Bilimleri Dergisi 4/3 (2019), 348-357. https://doi.org/10.5336/healthsci.2018-61638