Yıl: 2018 Cilt: 2 Sayı: 3 Sayfa Aralığı: 83 - 91 Metin Dili: İngilizce DOI: 10.26701/ems.369005 İndeks Tarihi: 28-05-2020

Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications

Öz:
Recently, the attraction on the bio-composite (known as green composites) materials has significantly increaseddue to the potential of being substitute to conventional materials used in manufacturing industries. Biocomposite materials are produced with natural fibers or natural resins instead of synthesized fibres (carbon,glass, etc fibers) or resins (poly vinyl alcohol, epoxy, etc resins ). The bio-based fibers such as jute, sisal, flax,hemp, bamboo, hair, wool, silk etc., are obtained from plants or animals. Also, natural matrix materials such asnatural rubber, polyester, etc., are produced from plants. The advantages of bio-composites such as the ease ofdisposal and being able to composted characteristics of bio-composites after the expiration date which is notgenerally possible with conventional synthetic materials, being renewable, sustainable have attracted manyresearcher. Furthermore, the comparable mechanical properties of bio-composites make feasible for applicationto many different products. This study reviews the, recent trends, mechanical and chemical properties, andapplication of bio-composites in recent years.
Anahtar Kelime:

Konular: Mühendislik, Makine
Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] John, M., Thomas, S., (2008). Biofibres and biocomposites. Carbohydrate Polymers 71(3): 343–64, Doi: 10.1016/j.carbpol.2007.05.040.
  • [2] Faruk, O., Bledzki, A.K., Fink, H.-P., Sain, M., (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science 37(11): 1552–96, Doi: 10.1016/j.progpolymsci.2012.04.003.
  • [3] Hassan, A., Salema, A.A., Ani, F.N., Bakar, A.A., (2010). A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. Polymer Composites 31(12): 2079–101, Doi: 10.1002/pc.21006.
  • [4] Shinoj, S., Visvanathan, R., Panigrahi, S., Kochubabu, M., (2011). Oil palm fiber (OPF) and its composites: A review. Industrial Crops and Products 33(1): 7–22, Doi: 10.1016/j.indcrop.2010.09.009.
  • [5] Venkateshwaran, N., Elayaperumal, A., (2010). Banana Fiber Reinforced Polymer Composites - A Review. Journal of Reinforced Plastics and Composites 29(15): 2387–96, Doi: 10.1177/0731684409360578.
  • [6] Santucci, B.S., Bras, J., Belgacem, M.N., Curvelo, A.A. da S., Pimenta, M.T.B., (2016). Evaluation of the effects of chemical composition and refining treatments on the properties of nanofibrillated cellulose films from sugarcane bagasse. Industrial Crops and Products 91: 238–48, Doi: 10.1016/j.indcrop.2016.07.017.
  • [7] Yang, Z., Li, K., Zhang, M., Xin, D., Zhang, J., (2016). Rapid determination of chemical composition and classification of bamboo fractions using visible–near infrared spectroscopy coupled with multivariate data analysis. Biotechnology for Biofuels 9(1): 35, Doi: 10.1186/s13068-016- 0443-z.
  • [8] Butkutė, B., Lemežienė, N., Kanapeckas, J., Navickas, K., Dabkevičius, Z., Venslauskas, K., (2014). Cocksfoot, tall fescue and reed canary grass: Dry matter yield, chemical composition and biomass convertibility to methane. Biomass and Bioenergy 66: 1–11, Doi: 10.1016/j.biombioe.2014.03.014.
  • [9] Yeng, C.M., Husseinsyah, S., Ting, S.S., (2015). A comparative study of different crosslinking agent-modified chitosan/corn cob biocomposite films. Polymer Bulletin 72(4): 791–808, Doi: 10.1007/s00289-015-1305-8.
  • [10] Jawaid, M., Abdul Khalil, H.P.S., (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers 86(1): 1–18, Doi: 10.1016/j.carbpol.2011.04.043.
  • [11] Gurunathan, T., Mohanty, S., Nayak, S.K., (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing 77: 1–25, Doi: 10.1016/j.compositesa.2015.06.007.
  • [12] Hori, K., Flavier, M.E., Kuga, S., Lam, T.B.T., Iiyama, K., (2000). Excellent oil absorbent kapok [Ceiba pentandra (L.) Gaertn.] fiber: fiber structure, chemical characteristics, and application. Journal of Wood Science 46(5): 401–4, Doi: 10.1007/BF00776404.
  • [13] Rahmi., Lelifajri., Julinawati., Shabrina., (2017). Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions. Carbohydrate Polymers 170: 226–33, Doi: 10.1016/j.carbpol.2017.04.084.
  • [14] El Boustani, M., Lebrun, G., Brouillette, F., Belfkira, A., (2017). Effect of a solvent-free acetylation treatment on reinforcements permeability and tensile behaviour of flax/epoxy and flax/wood fibre/epoxy composites. The Canadian Journal of Chemical Engineering 95(6): 1082–92, Doi: 10.1002/cjce.22777.
  • [15] Loiacono, S., Crini, G., Martel, B., Chanet, G., Cosentino, C., Raschetti, M., et al., (2017). Simultaneous removal of Cd, Co, Cu, Mn, Ni, and Zn from synthetic solutions on a hemp-based felt. II. Chemical modification. Journal of Applied Polymer Science 134(32): 45138, Doi: 10.1002/ app.45138.
  • [16] Li, X., Tabil, L.G., Panigrahi, S., (2007). Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment 15(1): 25–33, Doi: 10.1007/s10924- 006-0042-3.
  • [17] Luo, X., Benson, R.S., Kit, K.M., Dever, M., (2002). Kudzu fiber-reinforced polypropylene composite. Journal of Applied Polymer Science 85(9): 1961–9, Doi: 10.1002/app.10762.
  • [18] Bacci, L., Baronti, S., Predieri, S., di Virgilio, N., (2009). Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Industrial Crops and Products 29(2–3): 480–4, Doi: 10.1016/j.indcrop.2008.09.005.
  • [19] Angelini, L.G., Scalabrelli, M., Tavarini, S., Cinelli, P., Anguillesi, I., Lazzeri, A., (2015). Ramie fibers in a comparison between chemical and microbiological retting proposed for application in biocomposites. Industrial Crops and Products 75: 178–84, Doi: 10.1016/j.indcrop.2015.05.004.
  • [20] Methacanon, P., Weerawatsophon, U., Sumransin, N., Prahsarn, C., Bergado, D.T., (2010). Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydrate Polymers 82(4): 1090–6, Doi: 10.1016/j.carbpol.2010.06.036.
  • [21] Sun, R., M. Fang, J., Goodwin, A., M. Lawther, J., J. Bolton, A., (1998). Fractionation and characterization of polysaccharides from abaca fibre. Carbohydrate Polymers 37(4): 351–9, Doi: 10.1016/S0144-8617(98)00046-0.
  • [22] Fuqua, M.A., Huo, S., Ulven, C.A., (2012). Natural Fiber Reinforced Composites. Polymer Reviews 52(3): 259–320, Doi: 10.1080/15583724.2012.705409.
  • [23] Devireddy, S.B.R., Biswas, S., (2017). Physical and mechanical behavior of unidirectional banana/jute fiber reinforced epoxy based hybrid composites. Polymer Composites 38(7): 1396–403, Doi: 10.1002/pc.23706.
  • [24] Aguilar-Rios, A., Herrera-Franco, P.J., Martinez-Gomez, A. de J., Valadez-Gonzalez, A., (2014). Improving the bonding between henequen fibers and high density polyethylene using atmospheric pressure ethylene-plasma treatments. Express Polymer Letters 8(7): 491–504, Doi: 10.3144/expresspolymlett.2014.53.
  • [25] Reddy, N., Yang, Y., (2005). Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology, 23(1): 22-27, Doi: 10.1016/j.tibtech.2004.11.002.
  • [26] Ramakrishna, G., Sundararajan, T., (2005). Studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement and Concrete Composites 27(5): 575–82, Doi: 10.1016/j. cemconcomp.2004.09.008.
  • [27] Malkapuram, R., Kumar, V., Yuvraj Singh Negi., (2009). Recent Development in Natural Fiber Reinforced Polypropylene Composites. Journal of Reinforced Plastics and Composites 28(10): 1169–89, Doi: 10.1177/0731684407087759.
  • [28] Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W., (2013). A review on the degradability of polymeric composites based on natural fibres. Materials & Design 47: 424–42, Doi: 10.1016/j.matdes.2012.11.025.
  • [29] Parameswaran, B., Sugarcane Bagasse. (2009). In: Singh nee’ Nigam P., Pandey A. (eds) Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht. 239-240.
  • [30] Khan, Z., Yousif, B.F., Islam, M., (2017). Fracture behaviour of bamboo fiber reinforced epoxy composites. Composites Part B: Engineering 116: 186–99, Doi: 10.1016/j.compositesb.2017.02.015.
  • [31] Kumar, N., Mireja, S., Khandelwal, V., Arun, B., Manik, G., (2017). Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: A strength analysis and morphological study. Composites Part B: Engineering 109: 277–85, Doi: 10.1016/j.compositesb.2016.10.052.
  • [32] Yin, Q.F., et al., (2012). Preparation and Properties of Lignin-Epoxy Resin Composite. Bioresources, 7(4): 5737-5748. Doi: 10.15376/biores.7.4.5737-5748
  • [33] La Mantia, F.P., Morreale, M., (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing 42(6): 579–88, Doi: 10.1016/j.compositesa.2011.01.017.
  • [34] Wang, W., Huang, G., (2009). Characterisation and utilization of natural coconut fibres composites. Materials & Design 30(7): 2741–4, Doi: 10.1016/j.matdes.2008.11.002.
  • [35] Kapok. (2017) [cited 2017 03.10.2017]; Available from: https://www. britannica.com/topic/kapok.
  • [36] Chun, K.S., Husseinsyah, S., Yeng, C.M., (2016). Green composites from kapok husk and recycled polypropylene. Journal of Thermoplastic Composite Materials 29(11): 1517–35, Doi: 10.1177/0892705715569822.
  • [37] Daud, W.R.W. and K.N. Law, (2011) Oil Palm Fibers as Papermaking Material: Potentials and Challenges. Bioresources, 6(1): 901-917.
  • [38] Jute (Corchorus capsularis & C. olitorius). (2017) 03.10.2017].
  • [39] Zakriya, M., Ramakrishnan, G., Gobi, N., Palaniswamy, N., Srinivasan, J., (2017). Jute-reinforced non-woven composites as a thermal insulator and sound absorber – A review. Journal of Reinforced Plastics and Composites 36(3): 206–13, Doi: 10.1177/0731684416679745.
  • [40] Yan, L., Chouw, N., Jayaraman, K., (2014). Flax fibre and its composites – A review. Composites Part B: Engineering 56: 296–317, Doi: 10.1016/j. compositesb.2013.08.014.
  • [41] Shahzad, A., (2012). Hemp fiber and its composites – a review. Journal of Composite Materials 46(8): 973–86, Doi: 10.1177/0021998311413623.
  • [42] Hafizah, N.A.K., Bhutta, M.A.R., Jamaludin, M.Y., Warid, M.H., Ismail, M., Rahman, M.S., et al., (2014). Kenaf Fiber Reinforced Polymer Composites for Strengthening RC Beams. Journal of Advanced Concrete Technology 12(6): 167–77, Doi: 10.3151/jact.12.167.
  • [43] Yu, H., Yu, C., (2007). Study on microbe retting of kenaf fiber. Enzyme and Microbial Technology 40(7): 1806–9, Doi: 10.1016/j.enzmictec.2007.02.018.
  • [44] Liu, X. and L. Cheng, (2017). Influence of plasma treatment on properties of ramie fiber and the reinforced composites. Journal of Adhesion Science and Technology, 31(15): 1723-1734.
  • [45] Nadlene, R., Sapuan, S.M., Jawaid, M., Ishak, M.R., Yusriah, L., (2016). A Review on Roselle Fiber and Its Composites. Journal of Natural Fibers 13(1): 10–41, Doi: 10.1080/15440478.2014.984052.
  • [46] Malenab, R., Ngo, J., Promentilla, M., (2017). Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite. Materials 10(6): 579, Doi: 10.3390/ma10060579.
  • [47] Sathish, P., Kesavan, R., Ramnath, B.V., Vishal, C., (2017). Effect of Fiber Orientation and Stacking Sequence on Mechanical and Thermal Characteristics of Banana-Kenaf Hybrid Epoxy Composite. Silicon 9(4): 577–85, Doi: 10.1007/s12633-015-9314-7.
  • [48] Badgujar, A.G., Bambole, V.A., Mahanwar, P.A., (2011). Preparation and Characterization of Polypyrrole-Modified Henequen Fiber-Reinforced Polymethylmethacrylate Composites. Polymer-Plastics Technology and Engineering 50(12): 1281–7, Doi: 10.1080/03602559.2011.584241.
  • [49] Ibrahim, I.D., Jamiru, T., Sadiku, R.E., Kupolati, W.K., Agwuncha, S.C., (2017). Dependency of the Mechanical Properties of Sisal Fiber Reinforced Recycled Polypropylene Composites on Fiber Surface Treatment, Fiber Content and Nanoclay. Journal of Polymers and the Environment 25(2): 427–34, Doi: 10.1007/s10924-016-0823-2.
  • [50] Adeel, S., et al., (2016) .Bio-Processing of Surface-Oxidised Cellulosic Fibre by Microwave Treatment for Eco-Friendly Textile Dyeing. Oxidation Communications, 39(3): 2396-406.
  • [51] Ahmad, S.H., Rasid, R., Bonnia, N.N., Zainol, I., Mamun, A.A., Bledzki, A.K., et al., (2011). Polyester-Kenaf Composites: Effects of Alkali Fiber Treatment and Toughening of Matrix Using Liquid Natural Rubber. Journal of Composite Materials 45(2): 203–17, Doi: 10.1177/0021998310373514.
  • [52] Ali, M.E., Sultana, Z., Uddin, M.S., Mamun, S.A., Haque, M.M., Hasan, M., (2013). Effect of hydrazine post-treatment on natural fibre reinforced polymer composites. Materials Research Innovations 17: 19–26, Doi: 10 .1179/1432891713Z.000000000295.
  • [53] Baltazar-y-Jimenez, A., Juntaro, J., Bismarck, A., (2008). Effect of Atmospheric Air Pressure Plasma Treatment on the Thermal Behaviour of Natural Fibres and Dynamical Mechanical Properties of Randomly-Oriented Short Fibre Composites. Journal of Biobased Materials and Bioenergy 2(3): 264–72, Doi: 10.1166/jbmb.2008.410.
  • [54] Bian, P., Dai, Y., Qian, X., Chen, W., Yu, H., Li, J., et al., (2014). A process of converting cellulosic fibers to a superhydrophobic fiber product by internal and surface applications of calcium carbonate in combination with bio-wax post-treatment. RSC Adv. 4(95): 52680–5, Doi: 10.1039/ C4RA08437C.
  • [55] Chandrasekar, M., Ishak, M.R., Sapuan, S.M., Leman, Z., Jawaid, M., (2017). A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plastics, Rubber and Composites 46(3): 119– 36, Doi: 10.1080/14658011.2017.1298550.
  • [56] Cho, D., Seo, J.M., Lee, H.S., Cho, C.W., Han, S.O., Park, W.H., (2007). Property improvement of natural fiber-reinforced green composites by water treatment. Advanced Composite Materials 16(4): 299–314,.
  • [57] Cisneros-López, E.O., González-López, M.E., Pérez-Fonseca, A.A., González-Núñez, R., Rodrigue, D., Robledo-Ortíz, J.R., (2017). Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Composite Interfaces 24(1): 35–53, Doi: 10.1080/09276440.2016.1184556.
  • [58] Enciso, B., Abenojar, J., Martínez, M.A., (2017). Influence of plasma treatment on the adhesion between a polymeric matrix and natural fibres. Cellulose 24(4): 1791–801, Doi: 10.1007/s10570-017-1209-x.
  • [59] Fiore, V., Scalici, T., Nicoletti, F., Vitale, G., Prestipino, M., Valenza, A., (2016). A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Composites Part B: Engineering 85: 150–60, Doi: 10.1016/j.compositesb.2015.09.028.
  • [60] Fu, J.J., Z.W. Sun, and C.W. Yu, (2007). Research on one-bath alkali-H2O2 treatment for natural bamboo fiber degumming. Proceedings of the 2007 International Conference on Advanced Fibers and Polymer Materials 1(2): 727-729.
  • [61] Gulati, D. and M. Sain, (2005). Surface treatment of bio-fibres: A comparison between alkalization, acetylation and enzymatic treatment. Abstracts of Papers of the American Chemical Society 229: U296-U296.
  • [62] Holt, G.A., Chow, P., Wanjura, J.D., Pelletier, M.G., Wedegaertner, T.C., (2014). Evaluation of thermal treatments to improve physical and mechanical properties of bio-composites made from cotton byproducts and other agricultural fibers. Industrial Crops and Products 52: 627–32, Doi: 10.1016/j.indcrop.2013.11.003.
  • [63] Hossain, S.I., Hasan, M.N., Hasan, M.N., Hassan, A., (2013). Effect of Chemical Treatment on Physical, Mechanical and Thermal Properties of Ladies Finger Natural Fiber. Advances in Materials Science and Engineering 2013: 1–6, Doi: 10.1155/2013/824274.
  • [64] Islam, M., Beg, M., Mina, M., (2014). Fibre surface modifications through different treatments with the help of design expert software for natural fibre-based biocomposites. Journal of Composite Materials 48(15): 1887–99, Doi: 10.1177/0021998313491515.
  • [65] Janardhnan, S., Sain, M., (2011). Bio-Treatment of Natural Fibers in Isolation of Cellulose Nanofibres: Impact of Pre-Refining of Fibers on Bio-Treatment Efficiency and Nanofiber Yield. Journal of Polymers and the Environment 19(3): 615–21.
  • [66] Jayamani, E., Hamdan, S., Bakri, M.K. Bin., Kok Heng, S., Rahman, M.R., Kakar, A., (2016). Analysis of natural fiber polymer composites: Effects of alkaline treatment on sound absorption. Journal of Reinforced Plastics and Composites 35(9): 703–11.
  • [67] Jin, Z., Luo, Z., Yang, S., Lu, S., (2015). Influence of complexing treatment and epoxy resin coating on the properties of aramid fiber reinforced natural rubber. Journal of Applied Polymer Science 132(25), Doi: 10.1002/ app.42122.
  • [68] Khoshnava, S.M., Rostami, R., Ismail, M., Valipour, A., (2014). The Using Fungi Treatment as Green and Environmentally Process for Surface Modification of Natural Fibres. Applied Mechanics and Materials 554: 116–22, Doi: 10.4028/www.scientific.net/AMM.554.116.
  • [69] Kondo, Y., Miyazaki, K., Takayanagi, K., Sakurai, K., (2008). Surface treatment of PET fiber by EB-irradiation-induced graft polymerization and its effect on adhesion in natural rubber matrix. European Polymer Journal 44(5): 1567–76, Doi: 10.1016/j.eurpolymj.2008.02.020.
  • [70] Kord, B., (2013). Assessment of long-term water absorption in natural fiber reinforced thermoplastic composites influenced by filler rate and compatibilizer treatment. Journal of Thermoplastic Composite Materials 26(3): 296–306, Doi: 10.1177/0892705711423289.
  • [71] Koziol, M., Bogdan-Wlodek, A., Myalski, J., Wieczorek, J., (2011). Influence of wet chemistry treatment on the mechanical performance of natural fibres. Polish Journal of Chemical Technology 13(4): 21-27
  • [72] Kunanopparat, T., Menut, P., Morel, M.-H., Guilbert, S., (2008). Plasticized wheat gluten reinforcement with natural fibers: Effect of thermal treatment on the fiber/matrix adhesion. Composites Part A: Applied Science and Manufacturing 39(12): 1787–92.
  • [73] Li, W., Meng, L., Ma, R., (2016). Effect of surface treatment with potassium permanganate on ultra-high molecular weight polyethylene fiber reinforced natural rubber composites. Polymer Testing 55: 10–6, Doi: 10.1016/j.polymertesting.2016.08.006.
  • [74] Liu, L., Cheng, L., Huang, L., Yu, J., (2012). Enzymatic treatment of mechanochemical modified natural bamboo fibers. Fibers and Polymers 13(5): 600–5, Doi: 10.1007/s12221-012-0600-3.
  • [75] Liu, T., et al., (2013). Effect of Fiber Type and Coupling Treatment on Properties of High-Density Polyethylene/Natural Fiber Composites. Bioresources, 8(3): 4619-32.
  • [76] Lopattananon, N., Panawarangkul, K., Sahakaro, K., Ellis, B., (2006). Performance of pineapple leaf fiber–natural rubber composites: The effect of fiber surface treatments. Journal of Applied Polymer Science 102(2): 1974–84, Doi: 10.1002/app.24584.
  • [77] Luciu, I., et al., (2008). Low and Atmospheric Pressure Plasma Treatment of Natural Textile Fibers. Isdeiv 2008: Proceedings of the Xxiiird International Symposium on Discharges and Electrical Insulation in Vacuum, Vols 1 and 2, 2008: 499-502.
  • [78] Mishra, S., Naik, J.B., (2005). Effect of Treatment of Maleic Anhydride on Mechanical Properties of Natural Fiber: Polystyrene Composites. Polymer-Plastics Technology and Engineering 44(4): 663–75.
  • [79] Morshed, M.M., Alam, M.M., Daniels, S.M., (2010). Plasma Treatment of Natural Jute Fibre by RIE 80 plus Plasma Tool. Plasma Science and Technology 12(3): 325–9, Doi: 10.1088/1009-0630/12/3/16.
  • [80] Pickering, K.L., Sawpan, M.A., Jayaraman, J., Fernyhough, A., (2011). Influence of loading rate, alkali fibre treatment and crystallinity on fracture toughness of random short hemp fibre reinforced polylactide bio-composites. Composites Part A: Applied Science and Manufacturing 42(9): 1148–56, Doi: 10.1016/j.compositesa.2011.04.020.
  • [81] Reich, S., ElSabbagh, A., Steuernagel, L., (2008). Improvement of Fibre-Matrix-Adhesion of Natural Fibres by Chemical Treatment. Macromolecular Symposia 262(1): 170–81.
  • [82] Rokbi, M., et al., (2011). Effect of Chemical treatment on Flexure Properties of Natural Fiber-reinforced Polyester Composite. 11th International Conference on the Mechanical Behavior of Materials (Icm11), 10.
  • [83] Scalici, T., Fiore, V., Valenza, A., (2016). Effect of plasma treatment on the properties of Arundo Donax L. leaf fibres and its bio-based epoxy composites: A preliminary study. Composites Part B: Engineering 94: 167–75, Doi: 10.1016/j.compositesb.2016.03.053.
  • [84] Shah, D.U., Schubel, P.J., Licence, P., Clifford, M.J., (2012). Hydroxyethylcellulose surface treatment of natural fibres: the new ‘twist’ in yarn preparation and optimization for composites applicability. Journal of Materials Science 47(6): 2700–11.
  • [85] Sirvaitiene, A., et al., (2013). Influence of Natural Fibre Treatment on Interfacial Adhesion in Biocomposites. Fibres & Textiles in Eastern Europe, 21(4): 123-29.
  • [86] Sotenko, M., Coles, S.R., McEwen, I., DeCampos, R., Barker, G., Kirwan, K., (2016). Biodegradation as natural fibre pre-treatment in composite manufacturing. Green Materials 4(1): 8–17.
  • [87] Stocchi, A., Bernal, C., Vázquez, A., Biagotti, J., Kenny, J., (2007). A Silicone Treatment Compared to Traditional Natural Fiber Treatments: Effect on the Mechanical and Viscoelastic Properties of Jute—Vinylester Laminates. Journal of Composite Materials 41(16): 2005–24.
  • [88] Suradi, S.S., R.M. Yunus, Beg, M.D.H. (2011). Oil palm bio-fiber-reinforced polypropylene composites: effects of alkali fiber treatment and coupling agents. Journal of Composite Materials 45(18): 1853-61.
  • [89] Tan, H.S., et al., (2011). Effect of Alkali Treatment of Coir Fiber on Its Morphology and Performance of the Fiber/LLDPE Bio-composites. Manufacturing Engineering and Automation I, Pts 1-3, 139-141: p. 348.
  • [90] Tan, S.J., Supri, A.G., (2016). Properties of low-density polyethylene/ natural rubber/water hyacinth fiber composites: the effect of alkaline treatment. Polymer Bulletin 73(2): 539–57, Doi: 10.1007/s00289-015- 1508-z.
  • [91] Tserki, V., Zafeiropoulos, N.E., Simon, F., Panayiotou, C., (2005). A study of the effect of acetylation and propionylation surface treatments on natural fibres. Composites Part A: Applied Science and Manufacturing, 36(8): 1110-18.
  • [92] Valadez-Gonzalez, a., Cervantes-Uc, J.M., Olayo, R., Herrera-Franco, P.J., (1999). Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Composites Part B: Engineering 30(3): 309–20, Doi: 10.1016/S1359-8368(98)00054-7.
  • [93] Yan, L., Chouw, N., Yuan, X., (2012). Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. Journal of Reinforced Plastics and Composites 31(6): 425–37, Doi: 10.1177/0731684412439494.
  • [94] Zaborski, M., Lipinska, M.P., (2003). The effect of enzyme and plasma treatments of fibers on their adhesion to natural rubber. Przemysl Chemiczny. 82(8-9): 985-988.
  • [95] Verma, D., Jain, S., (2017). Effect of Natural Fibers Surface Treatment and their Reinforcement in Thermo-Plastic Polymer Composites: A Review. Current Organic Synthesis, 14(2): 186-199.
  • [96] Albinante, S.R., E.B.A.V. Pacheco, Visconte, L.L.Y. (2013). A Review on Chemical Treatment of Natural Fiber for Mixing with Polyolefins. Quimica Nova, 36(1): p. 114-122.
  • [97] Irina, K.C., G. Stanciu, Gutaga, S. (2004). The treatment of natural fibers used in composite materials. Bulletin of the University of Agricultural Sciences and Veterinary Medicine, 61: 473-473.
  • [98] Ahmad, I., A. Baharum, Abdullah, I. (2006). Effect of extrusion rate and fiber loading on mechanical properties of twaron fiber-thermoplastic natural rubber (TPNR) composites. Journal of Reinforced Plastics and Composites, 25(9): 957-65.
  • [99] Hargitai, H., Rácz, I., Anandjiwala, R.D., (2008). Development of HEMP Fiber Reinforced Polypropylene Composites. Journal of Thermoplastic Composite Materials 21(2): 165–74, Doi: 10.1177/0892705707083949.
  • [100] Holbery, J., Houston, D., (2006). Natural-fiber-reinforced polymer composites applications in automotive. Jom, 58(11): 80-86.
  • [101] John, M.J., Anandjiwala, R.D., (2008). Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polymer Composites 29(2): 187–207, Doi: 10.1002/pc.20461.
  • [102] Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M., (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering 42(4): 856–73, Doi: 10.1016/j.compositesb.2011.01.010.
  • [103] Mohammed, L., Ansari, M.N.M., Pua, G., Jawaid, M., Islam, M.S., (2015). A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science 2015: 1–15, Doi: 10.1155/2015/243947.
  • [104] Saheb, D.N. and J.P. Jog, (1999). Natural fiber polymer composites: A review. Advances in Polymer Technology, 18(4): 351-363.
  • [105] Balaji, A., Karthikeyan, B., Swaminathan, J., Sundar Raj, C., (2017). Mechanical behavior of short bagasse fiber reinforced cardanol-formaldehyde composites. Fibers and Polymers 18(6): 1193–9, Doi: 10.1007/s12221- 017-7009-y.
  • [106] Ninomiya, K., Abe, M., Tsukegi, T., Kuroda, K., Omichi, M., Takada, K., et al., (2017). Ionic liquid pretreatment of bagasse improves mechanical property of bagasse/polypropylene composites. Industrial Crops and Products 109: 158–62, Doi: 10.1016/j.indcrop.2017.08.019.
  • [107] Motaung, T., Mochane, M., Makhetha, T., Motloung, S., Mokhothu, T., Mokhena, T., et al., (2017). Effect of mechanical treatment on morphology and thermal and mechanical properties of sugar cane bagasse-low-density polyethylene composites. Polymer Composites 38(8): 1497–503, Doi: 10.1002/pc.23717.
  • [108] Chunhong, W., Shengkai, L., Zhanglong, Y., (2016). Mechanical, hygrothermal ageing and moisture absorption properties of bamboo fibers reinforced with polypropylene composites. Journal of Reinforced Plastics and Composites 35(13): 1062–74.
  • [109] Luo, H.L., et al., (2016). Effects of Alkali and Alkali/Silane Treatments of Corn Fibers on Mechanical and Thermal Properties of Its Composites With Polylactic Acid. Polymer Composites, 37(12): 3499-507.
  • [110] Prachayawarakorn, J., Chaiwatyothin, S., Mueangta, S., Hanchana, A., (2013). Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Materials & Design 47: 309–15, Doi: 10.1016/j.matdes.2012.12.012.
  • [111] Dogan, S.D., Tayfun, U., Dogan, M., (2016). New route for modifying cellulosic fibres with fatty acids and its application to polyethylene/jute fibre composites. Journal of Composite Materials, 50(18): 2477-2485.
  • [112] Oksman, K., M. Skrifvars, Selin, J.F. (2003).Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9): 1317-24.
  • [113] Anuar, H., et al., (2012). Improvement of Mechanical Properties of Injection-Molded Polylactic Acid-Kenaf Fiber Biocomposite. Journal of Thermoplastic Composite Materials, 25(2): 153-164.
  • [114] Campos, A., et al., (2012). Morphological, mechanical properties and biodegradability of biocomposite thermoplastic starch and polycaprolactone reinforced with sisal fibers. Journal of Reinforced Plastics and Composites, 31(8): 573-81.
  • [115] Koyuncu, M., Karahan, M., Karahan, N., Shaker, K., Nawab, Y., (2016). Static and Dynamic Mechanical Properties of Cotton/Epoxy Green Composites. Fibres and Textiles in Eastern Europe 24(4(118)): 105–11.
APA Yıldızhan Ş, Çalık A, Ozcanli M, SERİN H (2018). Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. , 83 - 91. 10.26701/ems.369005
Chicago Yıldızhan Şafak,Çalık Ahmet,Ozcanli Mustafa,SERİN Hasan Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. (2018): 83 - 91. 10.26701/ems.369005
MLA Yıldızhan Şafak,Çalık Ahmet,Ozcanli Mustafa,SERİN Hasan Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. , 2018, ss.83 - 91. 10.26701/ems.369005
AMA Yıldızhan Ş,Çalık A,Ozcanli M,SERİN H Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. . 2018; 83 - 91. 10.26701/ems.369005
Vancouver Yıldızhan Ş,Çalık A,Ozcanli M,SERİN H Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. . 2018; 83 - 91. 10.26701/ems.369005
IEEE Yıldızhan Ş,Çalık A,Ozcanli M,SERİN H "Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications." , ss.83 - 91, 2018. 10.26701/ems.369005
ISNAD Yıldızhan, Şafak vd. "Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications". (2018), 83-91. https://doi.org/10.26701/ems.369005
APA Yıldızhan Ş, Çalık A, Ozcanli M, SERİN H (2018). Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. European Mechanical Science, 2(3), 83 - 91. 10.26701/ems.369005
Chicago Yıldızhan Şafak,Çalık Ahmet,Ozcanli Mustafa,SERİN Hasan Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. European Mechanical Science 2, no.3 (2018): 83 - 91. 10.26701/ems.369005
MLA Yıldızhan Şafak,Çalık Ahmet,Ozcanli Mustafa,SERİN Hasan Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. European Mechanical Science, vol.2, no.3, 2018, ss.83 - 91. 10.26701/ems.369005
AMA Yıldızhan Ş,Çalık A,Ozcanli M,SERİN H Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. European Mechanical Science. 2018; 2(3): 83 - 91. 10.26701/ems.369005
Vancouver Yıldızhan Ş,Çalık A,Ozcanli M,SERİN H Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications. European Mechanical Science. 2018; 2(3): 83 - 91. 10.26701/ems.369005
IEEE Yıldızhan Ş,Çalık A,Ozcanli M,SERİN H "Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications." European Mechanical Science, 2, ss.83 - 91, 2018. 10.26701/ems.369005
ISNAD Yıldızhan, Şafak vd. "Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications". European Mechanical Science 2/3 (2018), 83-91. https://doi.org/10.26701/ems.369005