Yıl: 2019 Cilt: 7 Sayı: 3 Sayfa Aralığı: 212 - 226 Metin Dili: İngilizce DOI: 10.5505/jems.2019.42204 İndeks Tarihi: 01-06-2020

Hydrodynamic Investigation of a Submarine Moving Under Free Surface

Öz:
Submerged bodies are commonly used in many fields such as scientific researches, military and commercialapplications. Especially in military applications, submarines have a significant role as a silent and deterrentvehicle. Contrary to popular belief, submerged bodies also operate in shallow depth that free surface effectscome into play. This causes the visual identification of submarines while protecting them from sonardetection. This study focuses on the investigation of free surface effects on submarine hydrodynamics movingforward in different depths. The numerical calculations have been conducted at different Reynolds numbersranging from 1.5x107 to 3.5x107 for both bare and appended forms of DARPA Suboff. A commercial CFD solverhas been used to solve URANS equations with k-ε turbulence model. The numerical approach has first beenverified and validated with the available experimental data. Later, the numerical results have been discussedin terms of total resistance, resistance components and free surface deformations. It has been concluded thatthe submergence depth has a significant role on resistance components for depth Froude number larger than0.7 and the appendages have little effect on free surface deformations in all depths.
Anahtar Kelime:

Serbest Yüzey Altında İlerleyen Bir Denizaltının Hidrodinamik Açıdan İncelenmesi

Öz:
Batmış cisimler araştırma, askeri ve ticari uygulamalar gibi pek çok alanda yaygın bir şekilde kullanılmaktadır. Özellikle askeri uygulamalarda denizaltılar sessiz ve caydırıcı bir araç olarak önemli bir role sahiptir. Sanılanın aksine, batmış cisimler serbest yüzey etkilerinin devreye girdiği sığ derinlikte de çalışmaktadır. Bu durum denizaltıları sonar tespitinden korurken görsel olarak tespit edilmelerine sebep olmaktadır. Bu çalışma farklı derinliklerde ilerleyen denizaltının hidrodinamiğine serbest yüzey etkilerinin incelenmesine odaklanmaktadır. Sayısal hesaplamalar 1.5x107ile 3.5x107arasındaki Reynolds sayılarında takıntısız ve takıntılı DARPA denizaltısı için yapılmıştır. Ticari bir yazılım yardımıyla URANS denklemleri k-ε türbülans modeli kullanılarak çözülmüştür. Sayısal yöntem ilk önce eldeki deneysel veri ile doğrulanıp onaylanmıştır. Daha sonra sayısal sonuçlar, toplam direnç, direnç bileşenleri ve serbest yüzey deformasyonları açısından değerlendirilmiştir. Sonuç olarak derinlik Froude sayısının 0.7’den büyük olduğu durumlarda derinliğin dirence önemli bir etkisinin olduğu ve tüm derinliklerde takıntının serbest yüzey deformasyonuna etkisinin çok az olduğu görülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M. Renilson, Submarine Hydrodynamics. Springer International Publishing, 2015.
  • [2] N. C. Groves, T. T. Huang, and M. S. Chang, “Geometric characteristics of DARPA SUBOFF models (DTRC Model Nos. 5470 and 5471),” DTRC/ SHD-1298-01, 1989.
  • [3] T.HuangandH.L.Liu,“Measurements of flows over an axisymmetric body with various appendages in a wind tunnel: the DARPA SUBOFF experimental program,” presented at the 19th Symposium on Naval Hydrodynamics, Seoul, South Korea, 1994.
  • [4] H.-L. Liu and T. T. Huang, “Summary of DARPA Suboff Experimental Program Data,” Naval Surface Warfare Center Carderock Division (NSWCCD), West Bethesda, MD, USA, CRDKNSWC/HD-1298-11, 1998.
  • [5] N. Chase, “Simulations of the DARPA Suboff submarine including self-propulsion with the E1619 propeller,” Master Thesis, University of Iowa, 2012.
  • [6] N. Chase and P. M. Carrica, “Submarine propeller computations and application to self-propulsion of DARPA Suboff,” Ocean Eng., vol. 60, pp. 68–80, Mar. 2013.
  • [7] A. Posa and E. Balaras, “Large-Eddy simulations of a notional submarine in towed and self-propelled configurations,” Comput. Fluids, vol. 165, pp. 116–126, Mar. 2018.
  • [8] A. B. Philips, S. R. Turnock, and M. Furlong, “Comparisons of CFD simulations and in-service data for the self-propelled performance of an autonomous underwater vehicle,” presented at the 27th Symposium on Naval Hydrodynamics, Seoul, Korea, 2008.
  • [9] N. Zhang and S. Zhang, “Numerical simulation of hull/propeller interaction of submarine in submergence and near surface conditions,” J. Hydrodyn. Ser B, vol. 26, no. 1, pp. 50–56, Feb. 2014.
  • [10] A. Dogrul, S. Sezen, C. Delen, and S. Bal, “Self-Propulsion Simulation of DARPA Suboff,” presented at the International Maritime Association of the Mediterranean IMAM 2017, Lisbon, Portugal, 2017.
  • [11] S. Sezen, A. Dogrul, C. Delen, and S. Bal, “Investigation of self-propulsion of DARPA Suboff by RANS method,” Ocean Eng., vol. 150, pp. 258–271, 2018.
  • [12] S. Wilson-Haffenden, M. Renilson, D. Ranmuthugala, and E. Dawson, “An investigation into the wavemaking resistance of a submarine travelling below the free surface,” presented at the International Maritime Conference 2010: Maritime Industry - Challenges, Opportunities and Imperatives, Sydney, Australia, 2010, p. 495.
  • [13] E. Dawson, “An investigation into the effects of submergence depth, speed and hull length-to-diameter ratio on the near surface operation of conventional submarines,” PhD Thesis, University of Tasmania, 2014.
  • [14] A. Nematollahi, A. Dadvand, and M. Dawoodian, “An axisymmetric underwater vehicle-free surface interaction: A numerical study,” Ocean Eng., vol. 96, pp. 205–214, Mar. 2015.
  • [15] A. Vali, B. Saranjam, and R. Kamali, “Experimental and numerical study of a submarine and propeller behaviors in submergence and surface conditions,” J. Appl. Fluid Mech., vol. 11, no. 5, pp. 1297– 1308, 2018.
  • [16] M. M. Amiri, P. T. Esperança, M. A. Vitola, and S. H. Sphaier, “How does the free surface affect the hydrodynamics of a shallowly submerged submarine?,” Appl. Ocean Res., vol. 76, pp. 34–50, Jul. 2018.
  • [17] S. K. Shariati and S. H. Mousavizadegan, “Identification of underwater vehicles using surface wave pattern,” Appl. Ocean Res., vol. 78, pp. 281–289, Sep. 2018.
  • [18] D. C. Wilcox, Turbulence Modeling for CFD, 3rd edition. La Cãnada, Calif.: D C W Industries, 2006.
  • [19] L. F. Richardson, “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam,” Philos. Trans. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, vol. 210, pp. 307–357, 1911.
  • [20] ITTC, “7.5-03-01-04 CFD, General CFD Verification,” in ITTC - Recommended Procedures and Guidelines, 2011.
  • [21] P. J. Roache, “Verification of Codes and Calculations,” AIAA J., vol. 36, no. 5, pp. 696–702, 1998.
  • [22] IshmaiI. B. Celik, U. Ghia, and P. J. Roache, “Procedure for estimation and reporting of uncertainty due to discretization in CFD applications,” J. Fluids Eng.-Trans. ASME, vol. 130, no. 7, Jul. 2008.
  • [23] F. Stern, R. V. Wilson, H. W. Coleman, and E. G. Paterson, “Comprehensive Approach to Verification and Validation of CFD Simulations—Part 1: Methodology and Procedures,” J. Fluids Eng., vol. 123, no. 4, pp. 793–802, Jul. 2001.
  • [24] T. Tezdogan, Y. K. Demirel, P. Kellett, M. Khorasanchi, A. Incecik, and O. Turan, “Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming,” Ocean Eng., vol. 97, pp. 186– 206, Mar. 2015.
  • [25] F. Stern, R. Wilson, and J. Shao, “Quantitative V&V of CFD simulations and certification of CFD codes,” Int. J. Numer. Methods Fluids, vol. 50, no. 11, pp. 1335–1355, Apr. 2006.
  • [26] ITTC, “Practical guidelines for ship CFD applications,” presented at the Proceedings of 26th ITTC, Hague, 2011.
  • [27] J. C. Date and S. R. Turnock, “A study into the techniques needed to accurately predict skin friction using RANS solvers with validation against Froude’s historical flat plate experimental data,” 1999. [Online]. Available: http://eprints.soton. ac.uk/46061/. [Accessed: 28-Aug2015].
  • [28] CD-adapco, “STAR CCM+ Documentation.” 2015.
  • [29] A. Quérard, P. Temarel, and S. R. Turnock, “Influence of Viscous Effects on the Hydrodynamics of Ship-Like Sections Undergoing Symmetric and Anti-Symmetric Motions, Using RANS,” pp. 683–692, Jan. 2008.
  • [30] T.-L. Liu and Z.-M. Guo, “Analysis of wave spectrum for submerged bodies moving near the free surface,” Ocean Eng., vol. 58, pp. 239–251, Jan. 2013.
  • [31] S.K. Shariati andS.H.Mousavizadegan, “The effect of appendages on the hydrodynamic characteristics of an underwater vehicle near the free surface,” Appl. Ocean Res., vol. 67, pp. 31–43, Sep. 2017.
  • [32] ITTC, “Report of Resistance Committee,” presented at the Proceedings of 8th ITTC, Madrid, 1957.
  • [33] V. Bertram, Practical Ship Hydrodynamics, 2nd ed. Elsevier Science, 2014.
APA Dogrul A (2019). Hydrodynamic Investigation of a Submarine Moving Under Free Surface. , 212 - 226. 10.5505/jems.2019.42204
Chicago Dogrul Ali Hydrodynamic Investigation of a Submarine Moving Under Free Surface. (2019): 212 - 226. 10.5505/jems.2019.42204
MLA Dogrul Ali Hydrodynamic Investigation of a Submarine Moving Under Free Surface. , 2019, ss.212 - 226. 10.5505/jems.2019.42204
AMA Dogrul A Hydrodynamic Investigation of a Submarine Moving Under Free Surface. . 2019; 212 - 226. 10.5505/jems.2019.42204
Vancouver Dogrul A Hydrodynamic Investigation of a Submarine Moving Under Free Surface. . 2019; 212 - 226. 10.5505/jems.2019.42204
IEEE Dogrul A "Hydrodynamic Investigation of a Submarine Moving Under Free Surface." , ss.212 - 226, 2019. 10.5505/jems.2019.42204
ISNAD Dogrul, Ali. "Hydrodynamic Investigation of a Submarine Moving Under Free Surface". (2019), 212-226. https://doi.org/10.5505/jems.2019.42204
APA Dogrul A (2019). Hydrodynamic Investigation of a Submarine Moving Under Free Surface. Journal of Eta Maritime Science, 7(3), 212 - 226. 10.5505/jems.2019.42204
Chicago Dogrul Ali Hydrodynamic Investigation of a Submarine Moving Under Free Surface. Journal of Eta Maritime Science 7, no.3 (2019): 212 - 226. 10.5505/jems.2019.42204
MLA Dogrul Ali Hydrodynamic Investigation of a Submarine Moving Under Free Surface. Journal of Eta Maritime Science, vol.7, no.3, 2019, ss.212 - 226. 10.5505/jems.2019.42204
AMA Dogrul A Hydrodynamic Investigation of a Submarine Moving Under Free Surface. Journal of Eta Maritime Science. 2019; 7(3): 212 - 226. 10.5505/jems.2019.42204
Vancouver Dogrul A Hydrodynamic Investigation of a Submarine Moving Under Free Surface. Journal of Eta Maritime Science. 2019; 7(3): 212 - 226. 10.5505/jems.2019.42204
IEEE Dogrul A "Hydrodynamic Investigation of a Submarine Moving Under Free Surface." Journal of Eta Maritime Science, 7, ss.212 - 226, 2019. 10.5505/jems.2019.42204
ISNAD Dogrul, Ali. "Hydrodynamic Investigation of a Submarine Moving Under Free Surface". Journal of Eta Maritime Science 7/3 (2019), 212-226. https://doi.org/10.5505/jems.2019.42204