Yıl: 2019 Cilt: 7 Sayı: 4 Sayfa Aralığı: 318 - 331 Metin Dili: Türkçe DOI: 10.5505/jems.2019.63644 İndeks Tarihi: 01-06-2020

Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması

Öz:
Bu çalışmada, çeşitli antifouling boyaların hidrodinamik performanslarını incelemek için kullanılabilecek birhesaplamalı akışkanlar dinamiği (HAD) yaklaşımı sunulmaktadır. Düz bir levhanın etrafında gelişen, Reynoldssayısı 2,8×106 ve 5,5×106 olan akışları modellemek üzere, zamandan bağımsız zaman ortalamalı Navier Stokes(RANS) denklemleri çözülmüştür. Yüzey pürüzlülüğünün etkileri, sınır tabakanın logaritmik yasa bölgesindeki hızprofilinde aşağı kayma olarak modellenmiştir. Tam ölçekli bir gemiye ait sürtünme direnci sonuçlarını tahminetmek üzere Granville’nin benzerlik yasasından faydalanılmıştır. Sonuçlar daha önceki deneysel ve sayısalçalışmalar ile uyum içerisindedir.
Anahtar Kelime:

A CFD Study On the Hydrodynamic Characteristics of the Antifouling Paints

Öz:
This paper presents a computational fluid dynamics (CFD) approach which can be used to investigate the hydrodynamic performances of various antifouling paints. Steady Reynolds - Averaged - Navier - Stokes (RANS) equations were solved for the flows around a flat plate at Reynolds number of 2,8×106and 5,5×106 . The surface roughness effects were modelled as downward shift of the velocity profile at the log – law region of the boundary layer. Granville’s similarity law was used to extrapolate the results for a full scale ship. Results are in good agreement with the previous experimental and numerical studies.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] United Nations Conference on Trade and Development (UNCTAD) (2017). Review of Maritime Transport.
  • [2] International Maritime Organisation (IMO) (2009). Report of the Marine Environment Protection Committee in its Fifty-Ninth Session. MEPC 59/24.
  • [3] Longva T., Eide M. S., Skjong, R. (2010). Determining a required energy efficiency design index level for new ships based on a cost-effectiveness criterion, Maritime Policy & Management, 37:2, 129-143, DOI: 10.1080/03088830903533759
  • [4] Molland A.F., Turnock S.R., Hudson D.A. (2011). Ship resistance and propulsion: practical estimation of ship propulsive power. New York: Cambridge University Press.
  • [5] Lackenby, H. (1962). Resistance of ships with special reference to skin friction and hull surface condition, The 34th Thomas Lowe Grey Lecture, Proceedings of the Institute of Mechanical Engineers, Vol. 176, pp. 981-1014.
  • [6] Froude, W. (1872). Experiments on the surface-friction experienced by a plane moving through water. British Association for the Advancement of Science. The Collected Papers of William Froude, Institution of Naval Architects, 1955; p. 138–146.
  • [7] Froude, W. (1874). Report to the lords commissioners of the admiralty on experiments for the determination of the frictional resistance of water on a surface, under various conditions, performed at Chelston cross, under the authority of their lordships. 44th Report by the British Association for the Advancement of Science.
  • [8] McEntee, W. (1915). Variation of frictional resistance of ships with condition of wetted surface. Trans Soc Nav Arch Mar Eng. 24:37–42.
  • [9] Candries, M., Atlar, M., Anderson, C.D. (2001). Foul Release systems and drag. Consolidation of Technical Advances in the Protective and Marine Coatings Industry; Proceedings of the PCE 2001 Conference, pp. 273-286. Antwerp.
  • [10] Schultz, M. P., (2002). The Relationship Between Frictional Resistance and Roughness for Surfaces Smoothed by Sanding, ASME J. Fluids Eng., 124, pp. 492–499.
  • [11] Schultz, M.P. (2004). Frictional Resistance of Antifouling Coating Systems. ASME J. Fluids Eng. 126, 1039-1047.
  • [12] Grigson, C.W.B. (1992). Drag losses of new ships caused by hull finish. J.ShipRes. 36, 182–196.
  • [13] Nikuradse, J., (1933). Laws of Flow in Rough Pipes. NACA Technical Memorandum 1292.
  • [14] Atlar, M., Unal, B., Unal, U.O., Politis, G., Martinelli, E., Galli, G. Davies, C., Williams, D. (2012). An experimental investigation of the frictional drag characteristics of nanostructured and fluorinated fouling-release coatings usinganaxisymmetricbody,Biofouling, 29:1, 39-52.
  • [15] Ünal, O.U., Ünal, B., Atlar, M. (2012). Turbulent Boundary Layer Measurements Over Flat Surfaces Coated By Nanostructured Marine Antifoulings. Experiments in Fluids. 52:1431–1448.
  • [16] Schultz, M.P., Walker J.M., Steppe, C.N., Flack, K.A. (2015). Impact of Diatomaceous Biofilms on the Frictional Drag of Fouling-Release Coatings, Biofouling, 31, 9-10, 759- 773, DOI:10.1080/08927014.2015.11 08407.
  • [17] Haslbeck, E.G., Bohlander, G. (1992). Microbial biofilm effects on drag – lab and field.IN:Proceedings ofthe SNAME Ship Production Symposium. Paper No. 3A-1. Jersey City, N.J.: SNAME; 7p.
  • [18] Patel, V. (1998). Perspective: Flow at High Reynolds Number and Over Rough Surfaces—Achilles Heel of CFD. Journal of Fluids Engineeringtransactions of The Asme - J FLUID ENG. 120. 10.1115/1.2820682.
  • [19] Khor, Y.S., Xiao, Q., (2011). CFD simulations of the effects of fouling and antifouling, Ocean Engineering, 38, 1065-1079.
  • [20] Usta, O., Korkut, E. (2013). A Study for the Effect of Surface Roughness on Resistance Characteristics of Flat Plates, Marine Coatings Conference, London, UK.
  • [21] Demirel, Y.K., Khorasanchi, M., Turan O. Incecik, A. Schultz, M. (2014). A CFD model for the frictional resistance prediction of antifouling coatings. Ocean Engineering. 89. 21–31. 10.1016/j.oceaneng.2014.07.017.
  • [22] Colebrook, C.F., (1939). Turbulent Flow in Pipes, With Particular Reference to The Transition Region Between the Smooth and Rough Pipe Laws. J. Inst. Civil Eng. 11, 133-156.
  • [23] Haase, M., Zurcher, K., Davidson, G., Binns, J.R., Thomas, G., Bose,N.(2016). Novel CFD-based full-scale resistance prediction for large medium-speed catamarans. Ocean Engineering, 111(1), 198-208.
  • [24] Demirel, Y.K., Turan, O., Incecik, A. (2017). Predicting the effect of biofouling on ship resistance using CFD. Appl. Ocean Res. 62, 100–118.
  • [25] Rushd, S., Ashraful, I., Sanders., R.S. (2018). CFD Methodology to Determine the Hydrodynamic Roughness of a Surface with Application to Viscous Oil Coatings. J. Hydraul. Eng., 2018, 144(2): 04017067.
  • [26] Atlar, M., Yeginbayeva, I.A., Turkmen, S., Demirel, Y.K., Carchen, A., Marino, A., Williams, D. (2018). A Rational Approach to Predicting the Effect of Fouling Control Systems on “In Service” Ship Performance. GMO Journal of Ship and Marine Technology. 213:5-36.
  • [27] Demirel, Y.K. (2018). New Horizons in Marine Coatings. GMO Journal of Ship and Marine Technology. 213:37-53.
  • [28] Wilcox, D.C. (1994). Turbulence Modelling for CFD, İkinci Basım, DCW Industries, Colifornia.
  • [29] Tennekes, H., Lumley, J.L. (1972). A First Course in Turbulence. MIT Press, Cambridge, UK.
  • [30] Shih, T.-H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J. (1995). A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows, Computers and Fluids, 24(3), 227- 238.
  • [31] Manceau, R. ve Hanjalic ́, K. (2001). Elliptic blending model: A new near-wall Reynoldsstress turbulenceclosure. Physıcs of Fluids. 14, 744-754. DOI: 10.1063/1.1432693.
  • [32] Blazek, J. (2001). Computational Fluid Dynamics. 3rd. Edition. Butterworth Heinemann.
  • [33] Versteeg, H. K. ve Malalasekera, W. (1996). An Introduction to Computational Fluid Dynamics The Finite Volume Method, Üçüncü Basım, Longman Scientific and Technical, London UK.
  • [34] Patankar, S.V., Spalding, D.B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Tran. 15, 1787– 1806.
  • [35] Schlichting, H. (1979). Boundary Layer Theory. McGraw-Hill, New York.
  • [36] Clauser, F.H. (1954). Turbulent Boundary Layer in Adverse Pressure Gradients. Journal of the Aeronautical Sciences, 21, 91-108.
  • [37] CD-ADAPCO. (2011). User Guide STAR-CCM+.
  • [38] Cebeci, T., Bradshaw, P. (1977). Momentum Transfer in Boundary Layers. Washington, DC, Hemisphere Publishing Corp., New York, McGrawHill Book Co.
  • [39] Roache, P.J. (1998) Verification and Validation in Computational Science and Engineering, Hermosa Publishers, New Mexico, USA
  • [40] Richardson, L.F. (1910). The approximate arithmetical solution by finite differences ofphysical problems involving differential equations, with an application to thestresses in a masonry dam, Trans. R. Soc. Lond. 210 (1910) 307–357.
  • [41] Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J., Coleman, H., Raad, P.E. (2008). Procedure forestimation and reporting of uncertainty due to discretization in CFDapplications, J. Fluids Eng. Trans. ASME 130, 078001-1-4.
  • [42] Granville, P.S. (1958). The frictional resistance and turbulent boundary layer of rough surfaces. J. Ship Res. 2, 52–74.
  • [43] Hama, F.R. (1954). Boundary layer characteristics for smooth and rough surfaces. Transactions of the Society of Naval Architects and Marine Engineers, Vol. 62, pp. 333-358.
APA KARABULUT U, Ozdemir Y, BARLAS B (2019). Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. , 318 - 331. 10.5505/jems.2019.63644
Chicago KARABULUT Utku cem,Ozdemir Yavuz Hakan,BARLAS BARIS Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. (2019): 318 - 331. 10.5505/jems.2019.63644
MLA KARABULUT Utku cem,Ozdemir Yavuz Hakan,BARLAS BARIS Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. , 2019, ss.318 - 331. 10.5505/jems.2019.63644
AMA KARABULUT U,Ozdemir Y,BARLAS B Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. . 2019; 318 - 331. 10.5505/jems.2019.63644
Vancouver KARABULUT U,Ozdemir Y,BARLAS B Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. . 2019; 318 - 331. 10.5505/jems.2019.63644
IEEE KARABULUT U,Ozdemir Y,BARLAS B "Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması." , ss.318 - 331, 2019. 10.5505/jems.2019.63644
ISNAD KARABULUT, Utku cem vd. "Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması". (2019), 318-331. https://doi.org/10.5505/jems.2019.63644
APA KARABULUT U, Ozdemir Y, BARLAS B (2019). Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. Journal of Eta Maritime Science, 7(4), 318 - 331. 10.5505/jems.2019.63644
Chicago KARABULUT Utku cem,Ozdemir Yavuz Hakan,BARLAS BARIS Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. Journal of Eta Maritime Science 7, no.4 (2019): 318 - 331. 10.5505/jems.2019.63644
MLA KARABULUT Utku cem,Ozdemir Yavuz Hakan,BARLAS BARIS Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. Journal of Eta Maritime Science, vol.7, no.4, 2019, ss.318 - 331. 10.5505/jems.2019.63644
AMA KARABULUT U,Ozdemir Y,BARLAS B Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. Journal of Eta Maritime Science. 2019; 7(4): 318 - 331. 10.5505/jems.2019.63644
Vancouver KARABULUT U,Ozdemir Y,BARLAS B Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması. Journal of Eta Maritime Science. 2019; 7(4): 318 - 331. 10.5505/jems.2019.63644
IEEE KARABULUT U,Ozdemir Y,BARLAS B "Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması." Journal of Eta Maritime Science, 7, ss.318 - 331, 2019. 10.5505/jems.2019.63644
ISNAD KARABULUT, Utku cem vd. "Antifouling Boyaların Hidrodinamik Özellikleri Üzerine Bir HAD Çalışması". Journal of Eta Maritime Science 7/4 (2019), 318-331. https://doi.org/10.5505/jems.2019.63644