#### Sales History-based Demand Prediction using Generalized Linear Models

Yıl: 2019 Cilt: 23 Sayı: 3 Sayfa Aralığı: 840 - 849 Metin Dili: İngilizce İndeks Tarihi: 25-06-2020

Sales History-based Demand Prediction using Generalized Linear Models

Öz:
It’s vital for commercial enterprises to accurately predict demand by utilizingthe existing sales data. Such predictive analytics is a crucial part of their decision supportsystems to increase the profitability of the company.In predictive data analytics, the branchof regression modeling is used to predict a numerical response variable like sale amount. Inthis category, linear models are simple and easy to interpret yet they permit generalizationto very powerful and flexible families of models which are called Generalized linearmodels (GLM). The generalization potential over simple linear regression can be explainedtwofold: First, GLM relax the assumption of normally distributed error terms. Moreover,the relationship of the set of predictor variables and the response variable could berepresented by a set of link functions rather than the sole choice of the identity function.This work models the sales amount prediction problem through the use of GLM. Uniquecompany sales data are explored and the response variable, sale amount is fitted to theGamma distribution. Then, inverse link function, which is the canonical one in the caseof gamma-distributed response variable is used. The experimental results are comparedwith the other regression models and the classification algorithms. The model selection isperformed via the use of MSE and AIC metrics respectively. The results show that GLMis better than the linear regression. As for the classification algorithms, Random Forestand GLM are the top performers. Moreover, categorization on the predictor variablesimproves model fitting results significantly.
Anahtar Kelime:

Genelleştirilmiş Doğrusal Modeller Kullanılarak Satış Geçmişine Dayalı Talep Tahminlemesi

Öz:
Ticari işletmeler için mevcut satış verilerini kullanarak talebi net olarak tahmin etmek önemlidir. Şirketlerin karlılığı artırmak için karar destek sistemlerinin bir parçası olarak tahmin analitiği yapabiliyor olması gerekir.Tahmine yönelik veri analitiğinde, regresyon modelleri satış miktarı gibi sayısal bir bağımlı değişkenin tahmin edilmesinde kullanılır. Bu kategoride doğrusal modeller basittir, yorumlanması kolaydır ve aynı zamanda genelleştirilmiş doğrusal modeller (GLM) olarak adlandırılan çok güçlü ve esnek model ailelerine genelleştirme yapılmasını sağlar. Basit doğrusal regresyona göre genelleştirme potansiyeli iki katlı olarak açıklanabilir: İlk olarak GLM normal dağılımlı hata terimleri varsayımını yumuşatır. Ayrıca, tahmin değişkenleri kümesi ile bağımlı değişken arasındaki bağlantı fonksiyonunu özdeşlik fonksiyonu ile sınırlandırmaz. Bu çalışmada satış miktarı tahmin problemi GLM ile modellenmiştir. Model uyarlamasını en iyileştirmek için bir şirkete ait satış verilerinin keşifsel analizi yapılmış ve bağımlı değişken olan satış miktarının dağılımı gama dağılımı olarak bulunmuştur. Sonrasında, gama dağılımı bağımlı değisken için standart bağlantı fonksiyonu olan ters bağlantı fonksiyonu kullanılmıştır. Deneysel sonuçlar diğer regresyon modelleri ve sınıflandırma algoritmalarıyla karşılaştırılmıştır. Model seçiminde MSE ve AIC ölçütleri kullanılmıştır. Sonuçlar GLM’nin doğrusal regresyondan daha iyi olduğunu göstermektedir. Sınıflandırma algoritmaları açısından ise, rastgele orman ve GLM en üst performansı göstermiştir. Ayrıca, tahmin değişkenlerinin kategorizasyonunun model uyumunu iyileştirdiği görülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
• [1] Nelder, J.A., Wedderburn, R.W.M. 1972. Generalized linear models. Journal of the Royal Statistical Society, Series A, General, 135, 370-384.
• [2] Razzaghi, M. 2013. The Probit Link Function in Generalized Linear Models for Data Mining Applications. Journal of Modern Applied Statistical Methods, 12(19), 164-169.
• [3] Tauras, J.A. 2005. An Empirical Analysis of Adult Cigarette Demand. Eastern Economic Journal, 31(3), 361-375.
• [4] The Odum Institute, 2015. Logistic Regression and the American National Election Study 2012: Vote Choice in the 2012 US Presidential Election. The Odum Institute . [5] Kutner, M.H., Nachtsheim, C., Neter, J. 2004. Applied linear regression models. McGraw-Hill/Irwin.
• [6] Johnson, P. 2006. GLM with Gamma-Distributed Dependent Variables (Access Date: 28.05.2018.
• [7] Friedman, J., Hastie, T., Tibshirani, R. 2010. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Articles, 33(1), 1-22.
• [8] Schapire, R.E., Freund, Y. 2012. Boosting: Foundations and Algorithms. MIT Press.
• [9] Pearson, K. 1900. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine, 50(302), 157-175.
• [10] Jolliffe, I.T. 1982. A Note on the Use of Principal Components in Regression. Journal of the Royal Statistical Society. Series C (Applied Statistics), 31(3), 300-303.
• [11] Cortes, C., Vapnik, V. 1995. Support-Vector Networks. Mach. Learn., 20(3), 273-297.
• [12] Breiman, L. 2001. Random Forests. Mach. Learn., 45(1), 5-32.
• [13] Hothorn, T., Hornik, K., Zeileis, A. 2006. Unbiased Recursive Partitioning: A Conditional Inference Framework. Journal of Computational and Graphical Statistics, 15(3), 651-674.
• [14] Zhou, Z. 2012. Ensemble Methods: Foundations and Algorithms. 1st. MIT Press. Chapman & Hall/CRC.
• [15] Cohen, P.R. 1995. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge, MA, USA.
• [16] Bensoussan, A., Bertrand, P., Brouste, A. 2014. A generalized linear model approach to seasonal aspects of wind speed modeling. Journal of Applied Statistics, 41(8), 1694-1707.
 APA ÖZENBOY B, Tekir S (2019). Sales History-based Demand Prediction using Generalized Linear Models. , 840 - 849. 10.19113/sdufenbed.558620 Chicago ÖZENBOY BAŞAR,Tekir Selma Sales History-based Demand Prediction using Generalized Linear Models. (2019): 840 - 849. 10.19113/sdufenbed.558620 MLA ÖZENBOY BAŞAR,Tekir Selma Sales History-based Demand Prediction using Generalized Linear Models. , 2019, ss.840 - 849. 10.19113/sdufenbed.558620 AMA ÖZENBOY B,Tekir S Sales History-based Demand Prediction using Generalized Linear Models. . 2019; 840 - 849. 10.19113/sdufenbed.558620 Vancouver ÖZENBOY B,Tekir S Sales History-based Demand Prediction using Generalized Linear Models. . 2019; 840 - 849. 10.19113/sdufenbed.558620 IEEE ÖZENBOY B,Tekir S "Sales History-based Demand Prediction using Generalized Linear Models." , ss.840 - 849, 2019. 10.19113/sdufenbed.558620 ISNAD ÖZENBOY, BAŞAR - Tekir, Selma. "Sales History-based Demand Prediction using Generalized Linear Models". (2019), 840-849. https://doi.org/10.19113/sdufenbed.558620
 APA ÖZENBOY B, Tekir S (2019). Sales History-based Demand Prediction using Generalized Linear Models. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 840 - 849. 10.19113/sdufenbed.558620 Chicago ÖZENBOY BAŞAR,Tekir Selma Sales History-based Demand Prediction using Generalized Linear Models. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, no.3 (2019): 840 - 849. 10.19113/sdufenbed.558620 MLA ÖZENBOY BAŞAR,Tekir Selma Sales History-based Demand Prediction using Generalized Linear Models. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.23, no.3, 2019, ss.840 - 849. 10.19113/sdufenbed.558620 AMA ÖZENBOY B,Tekir S Sales History-based Demand Prediction using Generalized Linear Models. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 23(3): 840 - 849. 10.19113/sdufenbed.558620 Vancouver ÖZENBOY B,Tekir S Sales History-based Demand Prediction using Generalized Linear Models. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 23(3): 840 - 849. 10.19113/sdufenbed.558620 IEEE ÖZENBOY B,Tekir S "Sales History-based Demand Prediction using Generalized Linear Models." Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23, ss.840 - 849, 2019. 10.19113/sdufenbed.558620 ISNAD ÖZENBOY, BAŞAR - Tekir, Selma. "Sales History-based Demand Prediction using Generalized Linear Models". Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (2019), 840-849. https://doi.org/10.19113/sdufenbed.558620