Yıl: 2019 Cilt: 25 Sayı: 4 Sayfa Aralığı: 430 - 439 Metin Dili: İngilizce DOI: 10.5505/pajes.2018.43959 İndeks Tarihi: 01-07-2020

Development and implementation of a methodology for reverse engineering design of Francis turbine runners

Öz:
Francis type hydraulic turbine runners have complex blade shapes.Runner blades have three dimensional profiles that direct the incomingflow. In this study, a reverse engineering methodology is developed forthe redesign of turbines. Traditional reverse engineering steps arecombined with the basics and flow dynamics of hydraulic turbines andapplied to two different turbine runners (which have different specificspeeds) of two different hydroelectric power plants in operation. Themethodology is first verified by application on the first runner andutilized for the redesign of the runner of another power plant. Thereasons for the reduced performance of the second runner are examinedwith the help of the new inverse engineering design methodology and arehabilitation study is performed. Thus, the runner which only provides70% of its installed capacity, is redesigned and can now utilize its fullcapacity.
Anahtar Kelime:

Francis tipi su türbini çarkının tersine mühendislik ile tasarımı için bir yöntem geliştirilmesi ve uygulaması

Öz:
Francis tipi su türbinlerine ait çark kanatlarının yapısı oldukça karmaşıktır. Üç boyutlu profilleri ile gelen akışı yönlendirirler. Bu çalışmada, türbinlerin yeniden tasarımı için bir tersine mühendislik yöntemi geliştirilmiştir. Geleneksel tersine mühendislik yöntemi, hidrolik türbin temel çalışma prensipleri ve akışkanlar mekaniği temelleri ile birleştirilerek iki farklı kullanımda olan santralin türbin çarkına (iki farklı özgül hızı olan) uygulanmıştır. Yöntem, öncelikle bir santrale uygulanarak doğrulanmış, ardından diğer santralin türbin çarkının yeniden tasarımında kullanılmıştır. İkinci santralin türbin çarkının çalışmasındaki sorunların sebepleri yeni geliştirilen yöntem ile araştırılmış ve çarkın rehabilitasyonu gerçekleştirilmiştir. Kapasitesinin %70’i verimle çalışan çark, tam kapasite çalışır hale gelmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Drtina P, Sallaberger M. “Hydraulic turbines-basic principles and state-of-the art computational fluid dynamics applications”. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 213(1), 85-102, 1999.
  • [2] Krivchenko GI. Hydraulic Machines: Turbines and Pumps.,1st ed. Moscow, Russia, Mir Publishers, 1986.
  • [3] Alexander KV, Giddens EP, Fuller AM. “Axial-flow turbines for low head microhydro systems”. Renewable Energy, 34(1), 35-47, 2009.
  • [4] Varady T, Martin R R, Coxt J. “Reverse engineering of geometric models-an introduction”. Computer Aided Design, 29(4), 255-268, 1997.
  • [5] Raja V, Fernandes KJ. Reverse Engineering: An Industrial Perspective. 1st ed., London, UK, Springer, 2007.
  • [6] Motavalli S. “Review of reverse engineering approaches”. Computers & Industrial Engineering, 35(1-2), 25-28, 1998.
  • [7] Peng Q, Loftus M. A. “New approach to reverse engineering based on vision information”. International Journal of Machine Tools & Manufacture, 38(8), 881-899, 1998.
  • [8] Lee KH, Park HP. “Automated inspection planning of freeform shape parts by laser scanning”. Robotics and Computer Integrated Manufacturing, 16(4), 201-210, 2000.
  • [9] Farin, G. Curves and Surfaces for Computer-Aided Geometric Design, a Practical Guide. 4th ed., San Diego, CA, USA, Academic Press, 1997.
  • [10] Lin YP. Wang CT. Dai KR. “Reverse engineering in CAD model reconstruction of customized artificial joint”. Medical & Physics. 27(2), 189-193, 2005.
  • [11] Garcia R, Boulanger P, Barbosa PJ, Betancur MJ, Quintero AB, Castaneda LF, Betancur GGR. “Application of the reverse engineer in the modelling of a francis turbine in a hydroelectric minipower station”. 23rd ISPE International Conference on CAD/CAM Robotics and Factories of the Future, Bogota, Colombia, 16-18 August 2007.
  • [12] ANSYS. Bladegen User Manuel, v 15.0, Pennsylvania, USA, 2015.
  • [13] Dassault Systemes. SolidWorks User Manual. 2014 ed., Massachusets, USA, 2014.
  • [14] Arfken G. Conformal Mapping in Mathematical Methods for Physicists. 3rd ed., Orlando, FL, Academic Press, 1985.
  • [15] Ayli E, Kaplan A, Cetinturk H, Kavurmaci B, Demirel G, Celebioglu K, Aradag S. “CFD analysis of 3D flow for 1.4 MW francis turbine and model turbine manufacturing”. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston MA, USA, 2-5 August 2015.
  • [16] ANSYS. CFX User Manuel, v 15.0, Pennsylvania, USA 2015.
APA CELEBİOGLU K, KAPLAN A (2019). Development and implementation of a methodology for reverse engineering design of Francis turbine runners. , 430 - 439. 10.5505/pajes.2018.43959
Chicago CELEBİOGLU Kutay,KAPLAN Alper Development and implementation of a methodology for reverse engineering design of Francis turbine runners. (2019): 430 - 439. 10.5505/pajes.2018.43959
MLA CELEBİOGLU Kutay,KAPLAN Alper Development and implementation of a methodology for reverse engineering design of Francis turbine runners. , 2019, ss.430 - 439. 10.5505/pajes.2018.43959
AMA CELEBİOGLU K,KAPLAN A Development and implementation of a methodology for reverse engineering design of Francis turbine runners. . 2019; 430 - 439. 10.5505/pajes.2018.43959
Vancouver CELEBİOGLU K,KAPLAN A Development and implementation of a methodology for reverse engineering design of Francis turbine runners. . 2019; 430 - 439. 10.5505/pajes.2018.43959
IEEE CELEBİOGLU K,KAPLAN A "Development and implementation of a methodology for reverse engineering design of Francis turbine runners." , ss.430 - 439, 2019. 10.5505/pajes.2018.43959
ISNAD CELEBİOGLU, Kutay - KAPLAN, Alper. "Development and implementation of a methodology for reverse engineering design of Francis turbine runners". (2019), 430-439. https://doi.org/10.5505/pajes.2018.43959
APA CELEBİOGLU K, KAPLAN A (2019). Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 430 - 439. 10.5505/pajes.2018.43959
Chicago CELEBİOGLU Kutay,KAPLAN Alper Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, no.4 (2019): 430 - 439. 10.5505/pajes.2018.43959
MLA CELEBİOGLU Kutay,KAPLAN Alper Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol.25, no.4, 2019, ss.430 - 439. 10.5505/pajes.2018.43959
AMA CELEBİOGLU K,KAPLAN A Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019; 25(4): 430 - 439. 10.5505/pajes.2018.43959
Vancouver CELEBİOGLU K,KAPLAN A Development and implementation of a methodology for reverse engineering design of Francis turbine runners. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019; 25(4): 430 - 439. 10.5505/pajes.2018.43959
IEEE CELEBİOGLU K,KAPLAN A "Development and implementation of a methodology for reverse engineering design of Francis turbine runners." Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25, ss.430 - 439, 2019. 10.5505/pajes.2018.43959
ISNAD CELEBİOGLU, Kutay - KAPLAN, Alper. "Development and implementation of a methodology for reverse engineering design of Francis turbine runners". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/4 (2019), 430-439. https://doi.org/10.5505/pajes.2018.43959