Yıl: 2019 Cilt: 25 Sayı: 4 Sayfa Aralığı: 454 - 461 Metin Dili: İngilizce DOI: 10.5505/pajes.2019.88864 İndeks Tarihi: 01-07-2020

Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models

Öz:
In the study, elastic modulus estimation methods of natural fiberreinforced composites considered as alternatives to synthetic fiberreinforced composites have been investigated. Finite element analysis(FEA) and some mathematical models which are used for synthetic fiberreinforced composites were preferred. During the study, randomlyoriented cotton fiber reinforced composites at different fiber ratio byvolume were investigated and the tensile test results were foundexperimentally. Experimental data were compared with data obtainedusing finite element method and current analytical models. Particularlyin low fiber reinforced composite samples, the data obtained from theanalytical models approximated between 2-4% of the experimentaldata. On the other hand, in the analysis by the finite element method, itis observed that the difference with the experimental results is openedas the high deformations are occurred. The most suitable analyticalmodels have been found in the study and have been proposed for suchcomposites. Moreover, the behavior of composites can be simulated byfinite element methods and closed results (17-23%) are revealed in thisrespect.
Anahtar Kelime:

Gelişigüzel doğal lif takviyeli kompozitlerin elastiklik modülü tahmin yöntemleri: Sonlu elemanlar analizi ve analitik modeller

Öz:
Çalışmada sentetik lif takviyeli kompozitlere alternatif olarak düşünülen doğal lif takviyeli kompozitlerin elastisite modülü tahmin yöntemleri incelenmiştir. Yöntem olarak sonlu elemanlar analizi ve sentetik lif takviyeli kompozitler için kullanılan matematiksel modellerin uygunlukları araştırılmıştır. Çalışma boyunca ele alınan kompozitlerhacimce farklı oranlarda gelişigüzel pamuk lifi takviyeli olup çekme test sonuçları deneysel olarak bulunmuştur. Deneysel veriler sonlu elemanlar yöntemi ve mevcut analitik modeller kullanılarak elde edilen veriler ile kıyaslanmıştır. Özellikle düşük lif takviyeli kompozit numunelerde analitik modellerden elde edilen veriler deneysel verilere yaklaşık olarak %2-4 arasında yaklaşmıştır. Diğer yandan sonlu elemanlar yöntemiyle yapılan analizlerde ise yüksek şekil değiştirme oranlarına doğru gidildikçe deneysel sonuçlarla aradaki farkın açıldığı gözlenmiştir. Çalışma neticesinde en uygunan alitik modeller bulunmuş ve bu tarz kompozitler için önerilmiştir. Ayrıca sonlu elemanlar yöntemiyle kompozitlerin davranışları taklit edilebilmiş ve deneysel değerler ile yakın (%17-23) sonuçlar ortaya çıkarılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Whitcomb JD. “Three-dimensional stress analysis of plain weave composites”. Composite Materials: Fatigue and Stresses, 3, 16-39,1990.
  • [2] Guedes JM, Kikuchi N. “Preprocessing and post processing for materials based on the homogenization method with adaptive finite element methods”. Computer Method in Applied Mechanics and Engineering, 83(2), 143-198, 1990.
  • [3] Chapman C, Whitcomb J. “Effect of assumed tow architecture on predicted moduli and stresses in plain weave composites”. Journal of Composite Materials, 29(16), 2134-2159, 1995.
  • [4] Ng SP, Tse PC, Lau KJ. “Numerical and experimental determination of in plane elastic properties of 2/2 twill weave fabric composites”. Composites Part B, 29B, 735-744, 1998.
  • [5] Dasgupta A, Agarwal RK, Bhandarkar SM. “Threedimensional modelling of woven-fabric composites for effective thermo mechanical and thermal properties”. Composites Science and Technology, 56, 209-223,1996.
  • [6] Karkkainen RL, Sankar BV. “A direct micromechanics method for analysis of failure initiation of plain weave textile composites”. Composite Science and Technology, 66, 137-150, 2006.
  • [7] Kim HJ, Swan CC. “Voxel-based meshing and unit-cell analysis of textile composites”. International Journal for Numerical Methods in Engineering, 56, 977-1006, 2003.
  • [8] Lomov SV, Belov EB, Bischoff T. “Carbon composites based on multiaxial multiply stitched preforms. Part I-Geometry of the preform”. Composites Part A, 33, 1171-1183, 2002.
  • [9] Takano N, Uetsuji Y,Kashiwagi Y, Zako M. “Hierarchical modelling of textile composite materials and structures by the homogenization method”. Modelling and Simulation in Materials Science and Engineering, 7, 207-231,1999.
  • [10] Lomov SV, Ivanov DS, Verpoest I, Zako M. “Meso-FEModelling of Textile Composites: Road map. data flow and algorithms”. Composites Science and Technology, 67, 1870-1891, 2007.
  • [11] Sih GC, Carpinteri A, Surace G. Advanced Technology For Design and Fabrication of Composite Materials and Structures. 1st ed. Dordrecht, Netherlands, Kluwer Academic Publishers, 1995.
  • [12] Cox HL. “The elasticity and strength of paper and other fibrous materials”. British Journal of Applied Physics, 3, 72-79, 1952.
  • [13] Halpin JC. “Stiffness and expansion estimates. for oriented short fiber composites”. Journal of Composite Materials, 3, 720-724, 1969.
  • [14] Halpin JC, Pagano NJ. “The laminate approximation for randomly oriented fibrous composites”. Journal of Composite Materials, 3, 720-724,1969.
  • [15] Nielson LE. Mechanical Properties of Polymer and Composites. 1 ed. New York, USA, Marcel Dekker, 1974.
  • [16] Christensen RM, Waals FM. “effective stiffness of randomly oriented fiber composites”. Journal of Composite Materials, 6, 518-532, 1972.
  • [17] Lee LH. “Strength-composition relationships of random short glassfiber-thermoplastics composites”. Polymer Engineering and Science, 9, 213-219,1969.
  • [18] Manera M. “Elastic properties of randomly oriented short fiberglass composites”. Journal of Composite Materials, 11, 235-247,1977.
  • [19] Pan N. “The elastic constants of randomly oriented fiber composite: A new approach to prediction”. Science and Engineering of composite materials, 5, 63-72, 1996.
  • [20] Hirsch TJ. “Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate”. Journal of American Concrete Institute, 59, 427-451, 1962.
  • [21] Brody H, Ward IM. “Modulus of short carbon and glass fiber reinforced composites”. Polymer Engineering Science, 11, 139-151,1971.
  • [22] Chou TW, Nomura S. “Fiber orientation effects of the thermoplasticproperties of short fiber composites”. Fibre Scienceand Technology, 14, 279-291,1981.
  • [23] Fu SY, Lauke B. “Strength anisotropy of misaligned shortfiberreinforced polymers”. Composite Scienceand Technology, 59, 699-708, 1999.
  • [24] Hine PJ, Davidson N, Duckett RA, Ward IM. “Measuring thefiber orientation and modelling the elastic properties of injectionmoulded long-glass-fiberreinforced nylon”. Composite Science and Technology, 53, 125-131, 1995.
  • [25] Ji-Zhao L. “Predictions of tensile strength of short inorganic fibrereinforced polymer composites”. Polymer Testing, 30, 749-752,2011.
  • [26] Piggott MR. “Short fibre polymer composites: A fracturebased theoryof fibre reinforcement”. Journal of Composite Materials, 28, 588-606,1994.
  • [27] Epaarachchi J, Ku H, Gohel K. “Simplified empirical model forprediction of mechanical properties of random short fibre/vinylestercomposites”. Journal of Composite Materials, 44(6), 779-788, 2010.
  • [28] Biagiotti J, Fiori S, Torre L, Lopez-Manchado MA, Kenny JM. “Mechanical properties of polypropylene matrix compositesreinforced with natural fibres: A statistical approach”. PolymerComposites, 25(1), 26-36,2004.
  • [29] Angelo GF, Mark TK, Ning Y. “Predicting the elastic modulus ofnatural fibre reinforced thermoplastics”. Composites: Part A, 37, 1660-1671, 2006.
  • [30] Zeronian SH. “The mechanical properties of cotton fibers”. Journal of Applied Polymer Science, 47, 445-461, 1991.
  • [31] Mazumdar SK. Composites Manufacturing Materials, Product and Process Engineering. 1st ed. United States, CRC Press, 2002.
  • [32] Bakkal M, Bodur MS, Berkalp OB, Yilmaz S. “The effect of reprocessing on the mechanical properties of the waste fabric reinforced composites”. Journal of Materials Processing Technology, 212, 2541-2548, 2012.
  • [33] Zárate CN, Aranguen MI, Reboredo MM. “Resol-vegetable fibers composites”. Journal of Applied Polymer Science, 77, 1832-1840, 2000.
  • [34] Halpin JC. “Stiffness and expansion estimates, for oriented short fiber composites”. Journal of Composite Materials, 3, 720-724, 1969.
  • [35] Halpin JC, Pagano NJ. “The laminate approximation for randomly oriented fibrous composites”. Journal Compos Mater, 3, 720-724, 1969.
  • [36] Nielson LE, Landel RF. Mechanical properties of polymer and composites. 2nd ed. NewYork: Marcel Dekker, 1974.
  • [37] Christensen RM, Waals FM. “Effective stiffness of randomly oriented fiber composites”. Journal of Composite Materials, 6, 518-532, 1972.
  • [38] Lee LH. “Strength-Composition relationships of random short glassfiber-thermoplastics composites”. Polymer Engineering and Science, 9, 213-219, 1969.
  • [39] Tsai SW, Pagano NJ. Composite Materials Workshop. 1 ed. Stamford, USA, Technomic Publishing Co., 1968.
  • [40] Manera M. “Elastic properties of randomly oriented short fiber-glass composites”. Journal of Composite Materials, 11, 235-247, 1977.
  • [41] Pan N. “The elastic constants of randomly oriented fiber composite: A new approach to prediction”. Science and Engineering of composite materials, 5(962), 63-72, 1996.
  • [42] Tucker CL, Liang E. “Stiffness prediction for unidirectional short-fiber composites: Review and evaluation”. Composites Science and Technology, 59, 655-671, 1999.
APA Bodur M, BAKKAL M (2019). Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. , 454 - 461. 10.5505/pajes.2019.88864
Chicago Bodur Mehmet Safa,BAKKAL MUSTAFA Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. (2019): 454 - 461. 10.5505/pajes.2019.88864
MLA Bodur Mehmet Safa,BAKKAL MUSTAFA Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. , 2019, ss.454 - 461. 10.5505/pajes.2019.88864
AMA Bodur M,BAKKAL M Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. . 2019; 454 - 461. 10.5505/pajes.2019.88864
Vancouver Bodur M,BAKKAL M Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. . 2019; 454 - 461. 10.5505/pajes.2019.88864
IEEE Bodur M,BAKKAL M "Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models." , ss.454 - 461, 2019. 10.5505/pajes.2019.88864
ISNAD Bodur, Mehmet Safa - BAKKAL, MUSTAFA. "Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models". (2019), 454-461. https://doi.org/10.5505/pajes.2019.88864
APA Bodur M, BAKKAL M (2019). Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 454 - 461. 10.5505/pajes.2019.88864
Chicago Bodur Mehmet Safa,BAKKAL MUSTAFA Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, no.4 (2019): 454 - 461. 10.5505/pajes.2019.88864
MLA Bodur Mehmet Safa,BAKKAL MUSTAFA Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol.25, no.4, 2019, ss.454 - 461. 10.5505/pajes.2019.88864
AMA Bodur M,BAKKAL M Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019; 25(4): 454 - 461. 10.5505/pajes.2019.88864
Vancouver Bodur M,BAKKAL M Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019; 25(4): 454 - 461. 10.5505/pajes.2019.88864
IEEE Bodur M,BAKKAL M "Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models." Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25, ss.454 - 461, 2019. 10.5505/pajes.2019.88864
ISNAD Bodur, Mehmet Safa - BAKKAL, MUSTAFA. "Young’s modulus estimation techniques for the randomly oriented natural fiber reinforced composites: Finite element analysis and analytical models". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/4 (2019), 454-461. https://doi.org/10.5505/pajes.2019.88864