Yıl: 2019 Cilt: 5 Sayı: 2 Sayfa Aralığı: 189 - 201 Metin Dili: İngilizce DOI: 10.17515/resm2019.65is0909 İndeks Tarihi: 01-07-2020

Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method

Öz:
In this study, the main objective is to minimize the failure index of a cylindricallaminated composite hydrogen storage tank under internal pressure. The firststep is to obtain the distribution of stress components based on ClassicalLaminated Plate Theory (CLPT). The second is to evaluate the burst pressure ofthe tank according to three different first ply failure criteria and then tocompare the results with the experimental and numerical ones from literature.In the final part of the study, the best possible combination of winding angles,stacking sequences and thicknesses of laminates satisfying minimum possiblestress concentration will be obtained for different Carbon/Epoxy materials byDifferential Evolution Method. The stress components and, the burst pressuresreached according to Hashin-Rotem, Maximum Stress, and Tsai-Wu first-plyfailure criteria, have been complied with experimental and numerical results inthe literature for Type III pressure vessels. Manufacturable Type-III tankdesigns have been proposed satisfying the 35 MPa burst pressure for differentCarbon/Epoxy materials.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] George G, Schillebeeckx SJD. Managing Natural Resources: Organizational Strategy. Behaviour and Dynamics, Edward Elgar Publishing, Massachusetts, MA, USA, 2018. https://doi.org/10.4337/9781786435729
  • [2] Cox R. Hydrogen: Its Technology and Implication: Production Technology, CRC Press, Florida, USA, 2018.
  • [3] Barthelemy H, Weber H, Barbier F. Hydrogen storage: recent improvements and industrial perspectives. International Journal of Hydrogen Energy, 2017; 42(11): 7254-7262. https://doi.org/10.1016/j.ijhydene.2016.03.178
  • [4] Cohen D. Influence of filament winding parameters on composite vessel quality and strength. Composites Part A: Applied Science and Manufacturing, 1997; 28(12): 1035- 1047. https://doi.org/10.1016/S1359-835X(97)00073-0
  • [5] Barbero EJ. Introduction to Composite Materials Design. CRC Press, Florida, NW, USA, 2017.
  • [6] Liu PF, Chu JK, Hou SJ, Xu P, Zheng JY. Numerical simulation and optimal design for composite high-pressure hydrogen storage vessel: A review. Renewable and Sustainable Energy Reviews, 2012; 16(4): 1817-1827. https://doi.org/10.1016/j.rser.2012.01.006
  • [7] Messager T, Pyrz M, Gineste B, Chauchot P. Optimal laminations of thin underwater composite cylindrical vessels. Composite Structures, 2002; 58(4): 529-537. https://doi.org/10.1016/S0263-8223(02)00162-9
  • [8] Parnas L, Katırcı N. Design of fiber-reinforced composite pressure vessels under various loading conditions. Composite Structures, 2002; 58(1): 83-95. https://doi.org/10.1016/S0263-8223(02)00037-5
  • [9] Tabakov PY. Multi-dimensional design optimization of laminated structures using an improved genetic algorithm. Composite Structures, 2001; 54 (2): 349-354. https://doi.org/10.1016/S0263-8223(01)00109-X
  • [10] Richard F, Perreux D. A reliability method for optimization of [+ ϕ,− ϕ] n fiber reinforced composite pipes. Reliability Engineering and System Safety, 2000; 68(1): 53-59. https://doi.org/10.1016/S0951-8320(00)00002-8
  • [11] Lin DT, Hsieh JC, Chindakham N, Hai PD. Optimal design of a composite laminate hydrogen storage vessel. International Journal of Energy Research, 2013; 37(7): 761- 768. https://doi.org/10.1002/er.2983
  • [12] Han MG, Chang SH. Failure analysis of a Type III hydrogen pressure vessel under impact loading induced by free fall. Composite Structures, 2015; 127: 288-297. https://doi.org/10.1016/j.compstruct.2015.03.027
  • [13] Park WR, Fatoni NF, Kwon OH. Evaluation of stress and crack behavior using the extended finite element method in the composite layer of a type III hydrogen storage vessel. Journal of Mechanical Science and Technology, 2018; 32(5): 1995-2002. https://doi.org/10.1007/s12206-018-0407-2
  • [14] Nikbakt S, Kamarian S, Shakeri M. A review on optimization of composite structures part I: Laminated Composites. Composite Structures, 2018; 195: 158-185. https://doi.org/10.1016/j.compstruct.2018.03.063
  • [15] Roque CMC, Martins PALS. Maximization of fundamental frequency of layered composites using differential evolution optimization. Composite Structures, 2018; 183(1): 77-83. https://doi.org/10.1016/j.compstruct.2017.01.037
  • [16] Chakraborty D, Dutta A. Optimization of FRP composites against impact induced failure using island model parallel genetic algorithm. Composites Science and Technology, 2005; 65(13): 2003-2013. https://doi.org/10.1016/j.compscitech.2005.03.016
  • [17] Jing Z, Sun Q, Silberschmidt VV. Sequential permutation table method for optimization of stacking sequence in composite laminates. Composite Structures, 2016; 141: 240-252. https://doi.org/10.1016/j.compstruct.2016.01.052
  • [18] Irisarri FX, Bassir DH, Carrere N, Maire JF. Multiobjective stacking sequence optimization for laminated composite structures. Composites Science and Technology, 2009; 69(7-8): 983-990. https://doi.org/10.1016/j.compscitech.2009.01.011
  • [19] Zu L, Koussios S, Beukers A. Design of filament-wound circular toroidal hydrogen storage vessels based on non-geodesic fiber trajectories. International Journal of Hydrogen Energy, 2010; 35(2): 660-670. https://doi.org/10.1016/j.ijhydene.2009.10.062
  • [20] Francescato P, Gillet A, Leh D, Saffre P. Comparison of optimal design methods for type 3 high-pressure storage tanks. Composite Structures, 2012; 94(6): 2087-2096. https://doi.org/10.1016/j.compstruct.2012.01.01
  • [21] Pelletier JL, Vel SS. Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass. Computers and Structures, 2006; 84(29-30): 2065-2080. https://doi.org/10.1016/j.compstruc.2006.06.001
  • [22] Alcantar V, Ledesma S, Aceves SM, Ledesma E, Saldana A. Optimization of type III pressure vessels using genetic algorithm and simulated annealing. International Journal of Hydrogen Energy, 2017; 42(31): 20125-20132. https://doi.org/10.1016/j.ijhydene.2017.06.146
  • [23] Tsai SW. Strength Characteristics of Composite Materials. NASA CR-224, National Aeronautics and Space Administration, Washington, D. C., 1965:5-43.
  • [24] Hill R. A Theory of the Yielding and Plastic Flow of Anisotropic Materials. Proceedings of the Royal Society, 1948; 193: 281-297.
  • [25] Hoffman O. The Brittle Strength of Orthotropic Materials. Journal of Composite Materials, 1967; 1: 200-206. https://doi.org/10.1177/002199836700100210
  • [26] Kaw AK. Mechanics of composite materials, CRC press, Florida, USA, 2005.
  • [27] Aydin L, Artem HS, Oterkus E, Gundogdu O, Akbulut H. Mechanics of fiber composites. Fiber Technology for Fiber-Reinforced Composites, Woodhead Publishing, Cambridge, England, 2017:5-50. https://doi.org/10.1016/B978-0-08- 101871-2.00002-3
  • [28] Hashin Z, Rotem A. A fatigue failure criterion for fiber reinforced materials. Journal of Composite Materials, 1973; 7(4): 448-464. https://doi.org/10.1177/002199837300700404
  • [29] Ozturk S, Aydin L, Kucukdogan N, Celik E. Optimization of lapping processes of silicon wafer for photovoltaic applications. Solar Energy, 2018; 164: 1-11. https://doi.org/10.1016/j.solener.2018.02.039
  • [30] Ozturk S, Aydin L, Celik E. A comprehensive study on slicing processes optimization of silicon ingot for photovoltaic applications. Solar Energy, 2018; 161: 109-124. https://doi.org/10.1016/j.solener.2017.12.040
  • [31] Aydin L, Artem HS. Design and optimization of fiber composites. Fiber Technology for Fiber-Reinforced Composites. Woodhead Publishing, Cambridge, England, 2017:299-315. https://doi.org/10.1016/B978-0-08-101871-2.00014-X
  • [32] Liu P, Xing L, Zheng J. Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method. Composites Part B: Engineering, 2014; 56: 54-61. https://doi.org/10.1016/j.compositesb.2013.08.017
  • [33] Zheng J, Liu P. Elasto-plastic stress analysis and burst strength evaluation of Alcarbon fiber/epoxy composite cylindrical laminates. Computational Materials Science, 2008; 42(3): 453-461. https://doi.org/10.1016/j.commatsci.2007.09.011
  • [34] Mian HH, Wang G, Dar UA, Zhang W. Optimization of composite material system and lay-up to achieve minimum weight pressure vessel. Applied Composite Materials, 2013; 20(5): 873-889. https://doi.org/10.1007/s10443-012-9305-4
APA AYAKDAŞ O, AYDIN L, SAVRAN M, KÜÇÜKDOĞAN N, OZTÜRK S (2019). Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. , 189 - 201. 10.17515/resm2019.65is0909
Chicago AYAKDAŞ Ozan,AYDIN Levent,SAVRAN Melih,KÜÇÜKDOĞAN Nilay,OZTÜRK SAVAS Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. (2019): 189 - 201. 10.17515/resm2019.65is0909
MLA AYAKDAŞ Ozan,AYDIN Levent,SAVRAN Melih,KÜÇÜKDOĞAN Nilay,OZTÜRK SAVAS Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. , 2019, ss.189 - 201. 10.17515/resm2019.65is0909
AMA AYAKDAŞ O,AYDIN L,SAVRAN M,KÜÇÜKDOĞAN N,OZTÜRK S Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. . 2019; 189 - 201. 10.17515/resm2019.65is0909
Vancouver AYAKDAŞ O,AYDIN L,SAVRAN M,KÜÇÜKDOĞAN N,OZTÜRK S Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. . 2019; 189 - 201. 10.17515/resm2019.65is0909
IEEE AYAKDAŞ O,AYDIN L,SAVRAN M,KÜÇÜKDOĞAN N,OZTÜRK S "Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method." , ss.189 - 201, 2019. 10.17515/resm2019.65is0909
ISNAD AYAKDAŞ, Ozan vd. "Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method". (2019), 189-201. https://doi.org/10.17515/resm2019.65is0909
APA AYAKDAŞ O, AYDIN L, SAVRAN M, KÜÇÜKDOĞAN N, OZTÜRK S (2019). Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. Research on Engineering Structures and Materials, 5(2), 189 - 201. 10.17515/resm2019.65is0909
Chicago AYAKDAŞ Ozan,AYDIN Levent,SAVRAN Melih,KÜÇÜKDOĞAN Nilay,OZTÜRK SAVAS Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. Research on Engineering Structures and Materials 5, no.2 (2019): 189 - 201. 10.17515/resm2019.65is0909
MLA AYAKDAŞ Ozan,AYDIN Levent,SAVRAN Melih,KÜÇÜKDOĞAN Nilay,OZTÜRK SAVAS Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. Research on Engineering Structures and Materials, vol.5, no.2, 2019, ss.189 - 201. 10.17515/resm2019.65is0909
AMA AYAKDAŞ O,AYDIN L,SAVRAN M,KÜÇÜKDOĞAN N,OZTÜRK S Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. Research on Engineering Structures and Materials. 2019; 5(2): 189 - 201. 10.17515/resm2019.65is0909
Vancouver AYAKDAŞ O,AYDIN L,SAVRAN M,KÜÇÜKDOĞAN N,OZTÜRK S Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method. Research on Engineering Structures and Materials. 2019; 5(2): 189 - 201. 10.17515/resm2019.65is0909
IEEE AYAKDAŞ O,AYDIN L,SAVRAN M,KÜÇÜKDOĞAN N,OZTÜRK S "Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method." Research on Engineering Structures and Materials, 5, ss.189 - 201, 2019. 10.17515/resm2019.65is0909
ISNAD AYAKDAŞ, Ozan vd. "Optimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution method". Research on Engineering Structures and Materials 5/2 (2019), 189-201. https://doi.org/10.17515/resm2019.65is0909