Yıl: 2019 Cilt: 7 Sayı: 1 Sayfa Aralığı: 11 - 20 Metin Dili: İngilizce DOI: 10.25002/tji.2019.955 İndeks Tarihi: 20-07-2020

Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice

Öz:
Introduction: Cardiovascular diseases are the most prevalent cause of human morbidity and mortality worldwideand atherosclerosis is the main underlying cause of it. Probiotics comprise live microorganisms which have beenshown to have beneficial effects on the host when administered in the diet. Since probiotics are known to haveimmunomodulatory effects on the host immune system, these may directly (or indirectly) influence the inflammatoryprocess by which atherosclerotic plaques grow. In this study, Lactobacilli plantarum is used as the probiotic of choiceand its effects on T cell mediated immunity and plasma lipid profile as well as atherosclerotic plaque development arestudied on an experimental animal model of the disease, the ApoE-/- mouse.Material and Methods: The strains were identified by morphological, physical, enzymatic and biochemical assessment.Flow cytometry was used to study T cell subsets. IL-10 levels were determined by ELISA. The effect of L. plantarum onplaque grow was measured using standard histopathological techniques.Results: The survival of L. plantarum along the gastrointestinal tract was confirmed after its isolation from faecalsamples of treated animals. It was shown that L. plantarum is capable of increasing the proliferation of $CD4^+$ $CD25^+$T cells (p=1.4×$10^{-5}$) and the level of IL-10 (p=0.045) and decrease the size of atherosclerotic plaques (p=0.019) in theaortic sinus of the $ApoE^{-/-}$ mouse, without an improvement in cholesterol levels.Conclusion: In conclusion, the findings of this study provide supporting data for the use of L. plantarum as a potentialtherapeutic agent against atherosclerosis.
Anahtar Kelime:

Lactobacillus plantarum’un Hiperkolesterolemik Farelerde Anti-enflamatuvar ve Anti-aterojenik Etkileri

Öz:
Giriş: Kardiyovasküler hastalıklar dünya genelinde en yaygın insan morbidite ve mortalite sebebidir ve ateroskleroz bunun başlıca altta yatan nedenidir. Probiyotikler, günlük besinle alındığında konağa yararlı etkileri olduğu gösterilen canlı mikroorganizmaları içerir. Probiyotiklerin konak immün sistemi üzerinde immün düzenleyici etkileri olduğunun bilinmesi, bunların aterosklerotik plakların büyüdüğü enflamatuvar süreci doğrudan (veya dolaylı) etkileyebileceğini düşündürmektedir. Bu çalışmada, probiyotik tercihi olarak Lactobacillus plantarum kullanılmış, T hücre aracılı immünite ve plazma lipid profiline, ayrıca aterosklerotik plak gelişimine olan etkileri hastalığın deneysel hayvan modeli, ApoE-/- fare, üzerinde çalışılmıştır. Gereç ve Yöntemler: Suşlar morfolojik, fiziksel, enzimatik ve biyokimyasal değerlendirmeler ile tanımlanmıştır. T hücre alt grupları akan hücre ölçer cihazı kullanılarak çalışılmış, IL-10 seviyeleri ELISA ile belirlenmiştir. L. plantarum’un plak büyümesi üzerine etkisi standart histopatolojik teknikler ile ölçülmüştür. Bulgular: Tedavi görmüş hayvanların fekal örneklerinden izole edilmesini takiben L. plantarum’un sindirim kanalı boyunca hayatta kalımı doğrulanmıştır. L. plantarum’un CD4+CD25+T hücre proliferasyonunu (p=1,4×10–5) ve IL10 seviyesini artırabildiği (p=0,045) ve ApoE-/- farelerin aortik sinüslerindeki aterosklerotik plak boyutunu kolesterol seviyelerinde bir iyileşme olmaksızın küçültebildiği (p=0,019) gösterilmiştir. Sonuç: Sonuç olarak, bu çalışmanın bulguları L. plantarum’un ateroskleroza karşı potansiyel bir tedavi edici ajan olarak kullanımını destekler veriler sağlamıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ylä-Herttuala S, Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewics M, Newby A, Pasterkamp G, Serruys PW, Waltenberger J, Weber C, Tokgözoglu L. Stabilisation of atherosclerotic plaques. Position paper of the European Society of Cardiology (ESC) Working Group on atherosclerosis and vascular biology. Thromb Haemost 2011;106:1–19. [CrossRef]
  • 2. Libby P, Ridker PM, Hansson GK, Atherothrombosis LTNo. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol 2009;54:2129–38. [CrossRef]
  • 3. Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA. Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 2000;164 (1):13-7.
  • 4. Loppnow H, Werdan K, Buerke M. Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun 2008;14:63–87. [CrossRef]
  • 5. Ou HX, Guo BB, Liu Q, Li YK, Yang Z, Feng WJ, Mo ZC. Regulatory T cells as a new therapeutic target for atherosclerosis. Acta Pharmacol Sin 2018;39:1249–58.
  • 6. Taams LS, Akbar AN. Peripheral generation and function of CD4+CD25+ regulatory T cells. Curr Top Microbiol Immunol 2005;293:115–31. [CrossRef]
  • 7. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014;11:506–14.
  • 8. Lemme-Dumit JM, Polti MA, Perdigón G, Galdeano CM. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality. Benef Microbes 2018;9:153–64.
  • 9. Barbieri N, Herrera M, Salva S, Villena J, Alvarez S. Lactobacillus rhamnosus CRL1505 nasal administration improves recovery of T-cell mediated immunity against pneumococcal infection in malnourished mice. Benef Microbes 2017;30:393–405.
  • 10. Zuccotti GV, Meneghin F, Raimondi C, Dilillo D, Agostoni C, Riva E, Giovannini M. Probiotics in clinical practice: an overview. J Int Med Res 2008;36 Suppl 1:1A–53A. [CrossRef]
  • 11. Chistiakov DA, Bobryshev YV, Kozarov E, Sobenin IA, Orekhov AN. Role of gut microbiota in the modulation of atherosclerosisassociated immune response. Front Microbiol 2015;6:671. [CrossRef]
  • 12. Robles-Vera I, Toral M, Romero M, Jiménez R, Sánchez M, PérezVizcaíno F, Duarte J. Antihypertensive Effects of Probiotics. Curr Hypertens Rep 2017;19:26. [CrossRef]
  • 13. Kang HJ, Im SH. Probiotics as an Immune Modulator. J Nutr Sci Vitaminol (Tokyo) 2015;61 Suppl: S103–5. [CrossRef]
  • 14. Wang Y, Wu Y, Wang Yy, Xu H, Mei X, Yu D, Li W. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017;9:521. [CrossRef]
  • 15. Sharma S, Kurpad AV, Puri S. Potential of probiotics in hypercholesterolemia: A meta-analysis. Indian J Public Health 2016;60:280–6. [CrossRef]
  • 16. Behera SS, Ray RC, Zdolec N. Lactobacillus plantarum with Functional Properties: An Approach to Increase Safety and ShelfLife of Fermented Foods. Biomed Res Int 2018;2018:9361614. [CrossRef]
  • 17. Pendse AA, Arbones-Mainar JM, Johnson LA, Altenburg MK, Maeda N. Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res 2009;50 Suppl: S178–82. [CrossRef]
  • 18. Fukuyama N, Homma K, Wakana N, Kudo K, Suyama A, Ohazama H, et al. Validation of the Friedewald Equation for Evaluation of Plasma LDL-Cholesterol. J Clin Biochem Nutr 2008;43:1–5. [CrossRef]
  • 19. Anastasia N. Immunomodulatory approaches for prevention and treatment of infectious diseases, Current Opinion in Microbiology 2013;16:(5)590-5.
  • 20. Koopman JP, Kennis HM, van Druten JA. Colonization resistance of the digestive tract and gastrointestinal transit time in SPF mice. Lab Anim 1978;12:223–6. [CrossRef]
  • 21. Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, et al. Demonstration of safety of probiotics –a review. Int J Food Microbiol 1998;44:93–106.
  • 22. Bezkorovainy A. Probiotics: determinants of survival and growth in the gut, The American Journal of Clinical Nutrition 2001;73(2):399-405.
  • 23. Mor A, Planer D, Luboshits G, Afek A, Metzger S, Chajek-Shaul T, et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 2007;27:893–900. [CrossRef]
  • 24. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK, Klatzmann D, Tedgui A, Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006;12:178–80. [CrossRef]
  • 25. Petersen ER, Claesson MH, Schmidt EG, Jensen SS, Ravn P, Olsen J, Ouwehand AC, Kristensen NN. Consumption of probiotics increases the effect of regulatory T cells in transfer colitis. Inflamm Bowel Dis 2012;18:131–42. [CrossRef]
  • 26. Cosmi L, Liotta F, Lazzeri E, Francalanci M, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Vanini V, Romagnani P, Maggi E, Romagnani S, Annunziato F. Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood 2003;102:4107–14. [CrossRef]
  • 27. Pekalski, ML, Ferreira, RC, Coulson, RM, Cutler, AJ, Guo, H, Smyth DJ, Downes K, Dendrou CA, Castro Dopico X, Esposito L, Coleman G, Stevens HE, Nutland S, Walker NM, Guy C, Dunger DB, Wallace C, Tree TI, Todd JA, Wicker LS. Postthymic expansion in human CD4 naive T cells defined by expression of functional high-affinity IL-2 receptors. J immunol 2013;190(6) 2554–66.
  • 28. Fontenot, JD, Gavin MA, Rudensky Ay. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003;4:330-6.
  • 29. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006;6:508–19. [CrossRef]
  • 30. Miettinen M, Vuopio-Varkila J, Varkila K. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect Immun 1996;64:5403–5.
  • 31. Schultz M, Linde HJ, Lehn N, Zimmermann K, Grossmann J, Falk W, Schölmerich J. Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers. J Dairy Res 2003;70:165–73. [CrossRef]
  • 32. Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF, Soubrier F, Esposito B, Duez H, Fievet C, Staels B, Duverger N, Scherman D, Tedgui A. Protective role of interleukin-10 in atherosclerosis. Circ Res 1999;85:e17–24. [CrossRef]
  • 33. Caligiuri G, Rudling M, Ollivier V, Jacob MP, Michel JB, Hansson GK, Nicoletti A. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol Med 2003;9:10–7. [CrossRef]
  • 34. Han X, Boisvert WA. Interleukin-10 protects against atherosclerosis by modulating multiple atherogenic macrophage function. Thromb Haemost 2015;113:505–12. [CrossRef]
  • 35. McMillan DE. Blood flow and the localization of atherosclerotic plaques. Stroke 1985;16:582–7. [CrossRef]
  • 36. Cavallini DC, Bedani R, Bomdespacho LQ, Vendramini RC, Rossi EA. Effects of probiotic bacteria, isoflavones and simvastatin on lipid profile and atherosclerosis in cholesterolfed rabbits: a randomized double-blind study. Lipids Health Dis 2009; 8:1.
  • 37. Wang CY, Wu SC, Ng CC, Shyu YT. Effect of Lactobacillusfermented adlay-based milk on lipid metabolism of hamsters fed cholesterol-enriched diet. Food Research International 2010; 43:819-24.
  • 38. Tsai TY, Chu LH, Lee CL, Pan TM. Atherosclerosis-Preventing Activity of Lactic Acid Bacteria-Fermented Milk−Soymilk Supplemented with Momordica charantia. J Agric Food Chem 2009;57:2065-71.
  • 39. Larsen CN, Nielsen S, Kaestel P, Brockmann E, Bennedsen M, Christensen HR, Eskesen DC, Jacobsen BL, Michaelsen KF. Dose-response study of probiotic bacteria Bifidobacterium animalis subsp lactis BB-12 and Lactobacillus paracasei subsp paracasei CRL-341 in healthy young adults. Eur J Clin Nutr 2006;60:1284–93. [CrossRef]
  • 40. Lewis SJ, Burmeister S. A double-blind placebo-controlled study of the effects of Lactobacillus acidophilus on plasma lipids. Eur J Clin Nutr 2005;59:776–80. [CrossRef]
  • 41. McGillicuddy CJ, Carrier MJ, Weinberg PD. Distribution of lipid deposits around aortic branches of mice lacking LDL receptors and apolipoprotein E. Arterioscler Thromb Vasc Biol 2001;21:1220–5. [CrossRef]
  • 42. Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS. The tworeceptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci U S A 1994;91:4431–5. [CrossRef]
APA Şelli M, Bermudez-Fajardo A, Oviedo-Orta E (2019). Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. , 11 - 20. 10.25002/tji.2019.955
Chicago Şelli Mehmet Emrah,Bermudez-Fajardo Alexandra,Oviedo-Orta Ernesto Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. (2019): 11 - 20. 10.25002/tji.2019.955
MLA Şelli Mehmet Emrah,Bermudez-Fajardo Alexandra,Oviedo-Orta Ernesto Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. , 2019, ss.11 - 20. 10.25002/tji.2019.955
AMA Şelli M,Bermudez-Fajardo A,Oviedo-Orta E Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. . 2019; 11 - 20. 10.25002/tji.2019.955
Vancouver Şelli M,Bermudez-Fajardo A,Oviedo-Orta E Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. . 2019; 11 - 20. 10.25002/tji.2019.955
IEEE Şelli M,Bermudez-Fajardo A,Oviedo-Orta E "Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice." , ss.11 - 20, 2019. 10.25002/tji.2019.955
ISNAD Şelli, Mehmet Emrah vd. "Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice". (2019), 11-20. https://doi.org/10.25002/tji.2019.955
APA Şelli M, Bermudez-Fajardo A, Oviedo-Orta E (2019). Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. Turkish Journal of Immunology, 7(1), 11 - 20. 10.25002/tji.2019.955
Chicago Şelli Mehmet Emrah,Bermudez-Fajardo Alexandra,Oviedo-Orta Ernesto Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. Turkish Journal of Immunology 7, no.1 (2019): 11 - 20. 10.25002/tji.2019.955
MLA Şelli Mehmet Emrah,Bermudez-Fajardo Alexandra,Oviedo-Orta Ernesto Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. Turkish Journal of Immunology, vol.7, no.1, 2019, ss.11 - 20. 10.25002/tji.2019.955
AMA Şelli M,Bermudez-Fajardo A,Oviedo-Orta E Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. Turkish Journal of Immunology. 2019; 7(1): 11 - 20. 10.25002/tji.2019.955
Vancouver Şelli M,Bermudez-Fajardo A,Oviedo-Orta E Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice. Turkish Journal of Immunology. 2019; 7(1): 11 - 20. 10.25002/tji.2019.955
IEEE Şelli M,Bermudez-Fajardo A,Oviedo-Orta E "Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice." Turkish Journal of Immunology, 7, ss.11 - 20, 2019. 10.25002/tji.2019.955
ISNAD Şelli, Mehmet Emrah vd. "Anti-inflammatory and Anti-atherogenic Effects of Lactobacillus plantarum in Hypercholesterolemic Mice". Turkish Journal of Immunology 7/1 (2019), 11-20. https://doi.org/10.25002/tji.2019.955