Yıl: 2020 Cilt: 50 Sayı: 4 Sayfa Aralığı: 1180 - 1196 Metin Dili: İngilizce DOI: 10.3906/sag-1912-209 İndeks Tarihi: 31-08-2020

Nanotoxicity: a challenge for future medicine

Background/aim: Due to nanomaterials’ potential benefits for diagnosis and treatment, they are widely used in medical applicationsand personal care products. Interaction of nanomaterials, which are very small in size, with tissue, cell and microenvironment, canreveal harmful effects that cannot be created with chemically identical and larger counterparts in biological organisms. In this review, achallenge for future medicine, nanotoxicity of nanomaterials is discussed.Materials and methods: A detailed review of related literature was performed and evaluated as per medical applications of nanomaterialstheir toxicity.Results and conclusion: Most authors state “the only valid technology will be nanotechnology in the next era”; however, there is noconsensus on the impact of this technology on humankind, environment and ecological balance. Studies dealing with the toxic effect ofnanomaterials on human health have also varied with developing technology. Nanotoxicology studies such as in vivo-like on 3D humanorgans, cells, advanced genetic studies, and -omic approaches begin to replace conventional methods. Nanotoxicity and adverse effectsof nanomaterials in exposed producers, industry workers, and patients make nanomaterials a double-edged sword for future medicine.In order to control and tackle related risks, regulation and legislations should be implemented, and researchers have to conduct jointmultidisciplinary studies in various fields of medical sciences, nanotechnology, nanomedicine, and biomedical engineering.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Jr. et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology 2015; 6: 1769-1780. doi: 10.3762/ bjnano.6.181
  • 2. DTU environment, the Danish ecological council and Danish consumer council (2020). The Nanodatabase [online]. Website http://nanodb.dk/en/ [accessed 27 March 2020].
  • 3. Warheit DB, Sayes CM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacology & Therapeutics 2008; 120 (1): 35-42. doi: 10.1016/j.pharmthera.2008.07.001
  • 4. Seabra A, Durán N. Nanotoxicology of metal oxide nanoparticles. Metals 2015; 5 (2): 934-975. doi: 10.3390/ met5020934
  • 5. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA et al. Metal-based nanoparticles and their toxicity assessment. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology 2010; 2 (5): 544-568. doi: 10.1002/ wnan.103
  • 6. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993; 363 (6430): 603-605. doi: 10.1038/363603a0
  • 7. Bethune D, Kiang CH, De Vries M, Gorman G, Savoy R et al. Cobalt-catalysed growth of carbon nanotubes with singleatomic-layer walls. Nature 1993; 363 (6430): 605-607. doi: 10.1038/363605a0
  • 8. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE et al. Individual single-wall carbon nanotubes as quantum wires. Nature 1997; 386 (6624): 474-477. doi: 10.1038/386474a0
  • 9. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000; 287 (5453): 637-640. doi: 10.1126/science.287.5453.637
  • 10. Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters 2000; 84 (20): 4613-4616. doi: 10.1103/PhysRevLett.84.4613
  • 11. Gurevitch D, Shuster-Meiseles T, Nov O, Zick Y, Rudich A et al. TiO2 nanoparticles induce insulin resistance in liver-derived cells both directly and via macrophage activation. Nanotoxicology 2012; 6: 804-812. doi: 10.3109/17435390.2011.625128
  • 12. Mohammadipour A, Fazel A, Haghir H, Motejaded F, Rafatpanah H et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring. Environmental Toxicology and Pharmacology 2014; 37 (2): 617-625. doi: 10.1016/j.etap.2014.01.014
  • 13. Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Critical Reviews in Toxicology 2014; 44 Suppl 4: 1-80. doi: 10.3109/10408444.2014.934439
  • 14. Blum JL, Xiong JQ, Hoffman C, Zelikoff JT. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicological Sciences 2012; 126 (2): 478-486. doi: 10.1093/toxsci/kfs008
  • 15. Tripathi SK, Kaur G, Khurana RK, Kapoor S, Singh B. Quantum Dots and Their Potential Role in Cancer Theranostics. Critical Reviews in Therapeutic Drug Carrier Systems 2015; 32 (6): 461- 502. doi: 10.1615/CritRevTherDrugCarrierSyst.2015012360
  • 16. Luo GP, Long J, Zhang B, Liu C, Ji SR et al. Quantum dots in cancer therapy. Expert Opinion on Drug Delivery. 2012; 9 (1): 47-58. doi: 10.1517/17425247.2012.638624
  • 17. Jain MP, Vaisheva F, Maysinger D. Metalloestrogenic effects of quantum dots. Nanomedicine (London) 2012; 7 (1): 23-37. doi: 10.2217/nnm.11.102
  • 18. Li M, Tian X, Liang W, Yuan R, Chai Y. Ultrasensitive photoelectrochemical assay with PTB7-Th/CdTe quantum dots sensitized structure as signal tag and benzo-4- chlorohexadienone precipitate as efficient quencher. Analytical Chemistry 2018; 90 (24): 14521-14526. doi: 10.1021/acs. analchem.8b04370
  • 19. Qu M, Qiu Y, Lv R, Yue Y, Liu R et al. Exposure to MPAcapped CdTe quantum dots causes reproductive toxicity effects by affecting oogenesis in nematode caenorhabditis elegans. Ecotoxicology and Environmental Safety 2019; 173: 54-62. doi: 10.1016/j.ecoenv.2019.02.018
  • 20. Jia G, Wang H, Yan L, Wang X, Pei R et al. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology 2005; 39 (5): 1378-1383. doi: 10.1021/es048729l
  • 21. Kale SN, Arora S, Bhayani KR, Paknikar KM, Jani M et al. Cerium doping and stoichiometry control for biomedical use of La0.7Sr0.3MnO3 nanoparticles: microwave absorption and cytotoxicity study. Nanomedicine 2006; 2 (4): 217-221. doi: 10.1016/j.nano.2006.10.001
  • 22. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro 2005; 19 (7): 975-983. doi: 10.1016/j. tiv.2005.06.034
  • 23. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives 2006; 114 (2): 165-172. doi: 10.1289/ehp.8284
  • 24. Wakefield G, Lipscomb S, Holland E, Knowland J. The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components. Photochemical and Photobiological Sciences 2004; 3 (7): 648-652. doi: 10.1039/b403697b
  • 25. Pulskamp K, Diabate S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters 2007; 168 (1): 58-74. doi: 10.1016/j.toxlet.2006.11.001
  • 26. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology 2015; 73 (1): 137-150. doi: 10.1016/j. yrtph.2015.06.001
  • 27. International Organization for Standardization (ISO). Nanotechnologies–Vocabulary–Part 2: Nano‐objects. ISO/TS 80004-2: 2015.
  • 28. Klaassen CD, Watkins JB. Casarett & Doull’s Essentials of Toxicology. 3rd ed: McGraw Hill Education - Lange; 2015.
  • 29. Nowack B, Brouwer C, Geertsma RE, Heugens EH, Ross BL et al. Analysis of the occupational, consumer and environmental exposure to engineered nanomaterials used in 10 technology sectors. Nanotoxicology 2013; 7 (6): 1152-1156. doi: 10.3109/17435390.2012.711863
  • 30. Berk S, Akkurt I. Nanoparticle: a nightmare for the future. Tuberkuloz ve Toraks 2012; 60 (2): 180-184. doi: 10.5578/ tt.3557
  • 31. Inoue K, Takano H. Aggravating impact of nanoparticles on immune-mediated pulmonary inflammation. The Scientific World Journal 2011; 11: 382-390. doi: 10.1100/tsw.2011.44
  • 32. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters 2006; 6 (4): 662-668. doi: 10.1021/nl052396o
  • 33. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. Journal of the American Chemical Society 2004; 126 (21): 6520-6521.doi: 10.1021/ja048792a
  • 34. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology 2008; 3 (3): 145-150. doi: 10.1038/nnano.2008.30
  • 35. Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids and Surfaces B: Biointerfaces 2008; 66 (2): 274-280. doi: 10.1016/j.colsurfb.2008.07.004
  • 36. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X et al. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology. 2005; 3: 6. doi: 10.1186/1477- 3155-3-6
  • 37. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16 (10): 2346-2353. doi: 10.1088/0957-4484/16/10/059
  • 38. Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology 2009; 87 (3): 133-170. doi: 10.1016/j.pneurobio.2008.09.009
  • 39. Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 2009; 1 (1): 42-51. doi: 10.1080/17435390701314902
  • 40. Huang H, Shen L, Ford J, Wang YH, Xu YR. Computational issues in biomedical nanometrics and nanomaterials. Journal of Nano Research 2008; 1: 50-58. doi: 10.4028/www.scientific. net/JNanoR.1.50
  • 41. Ismail FS, Rohanizadeh R, Atwa S, Mason RS, Ruys AJ et al. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells. Journal of Materials Science: Materials in Medicine 2007; 18 (5): 705-714. doi: 10.1007/s10856-006-0012-2
  • 42. Nigavekar SS, Sung LY, Llanes M, El-Jawahri A, Lawrence TS et al. 3H dendrimer nanoparticle organ/tumor distribution. Pharmaceutical Research 2004; 21 (3): 476-483. doi: 10.1023/B:PHAM.0000019302.26097.cc
  • 43. Driscoll KE, Carter JM, Howard BW, Hassenbein DG, Pepelko W et al. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicology and Applied Pharmacology 1996; 136 (2): 372-380. doi: 10.1006/taap.1996.0045
  • 44. Nikula K, Snipes M, Barr E, Griffith W, Henderson R et al. Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 rats. Toxicological Sciences 1995; 25 (1): 80-94. doi: 10.1006/ faat.1995.1042
  • 45. Schins RP, Duffin R, Hohr D, Knaapen AM, Shi T et al. Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chemical Research in Toxicology 2002; 15 (9): 1166-1173. doi: 10.1021/tx025558u
  • 46. Park KH, Chhowalla M, Iqbal Z, Sesti F. Single-walled carbon nanotubes are a new class of ion channel blockers. Journal of Biological Chemistry 2003; 278 (50): 50212-50216. doi: 10.1074/jbc.M310216200
  • 47. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. British Journal of Pharmacology 2005; 146 (6): 882-893. doi: 10.1038/sj.bjp.0706386
  • 48. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology 2007; 2 (4): 249-255. doi: 10.1038/nnano.2007.70
  • 49. Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD et al. Inhalation of poorly soluble particles. II. influence of particle surface area on inflammation and clearance. Inhalation Toxicology 2000; 12 (12): 1113-1126. doi: 10.1080/08958370050166796
  • 50. Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. Journal of Drug Targeting 2004; 12 (9-10): 635- 641. doi: 10.1080/10611860400015936
  • 51. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K et al. Safe handling of nanotechnology. Nature 2006; 444 (7117): 267-269. doi: 10.1038/444267a
  • 52. BeruBe K, Balharry D, Sexton K, Koshy L, Jones T. Combustionderived nanoparticles: mechanisms of pulmonary toxicity. Clinical and Experimental Pharmacology and Physiology 2007; 34 (10): 1044-1050. doi: 10.1111/j.1440-1681.2007.04733.x
  • 53. Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H et al. Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicologic Pathology 2006; 34 (7): 949-957. doi: 10.1080/01926230601080502
  • 54. Nemmar A, Hoet PM, Vanquickenborne B, Dinsdale D, Thomeer M et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105 (4): 411-414. doi: 10.1161/hc0402.104118
  • 55. Hadjikhani A, Rodzinski A, Wang P, Nagesetti A, Guduru R et al. Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy. Nanomedicine 2017; 12 (15): 1801- 1822. doi: 10.2217/nnm-2017-0080
  • 56. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Particle and Fibre Toxicology 2010; 7. doi: 10.1186/1743-8977-7-5
  • 57. De Matteis V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/ in vivo toxicity evaluation. Toxics 2017; 5 (4). doi: 10.3390/ toxics5040029
  • 58. Sharifi S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P et al. Toxicity of nanomaterials. Chemical Society Reviews 2012; 41 (6): 2323-2243. doi: 10.1039/c1cs15188f
  • 59. Sajid M, Ilyas M, Basheer C, Tariq M, Daud M et al. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research 2015; 22 (6): 4122-4143. doi: 10.1007/s11356-014-3994-1
  • 60. Department of human and health services, U.S. Occupational exposure to carbon nanotubes and nanofibers. Carbon NanotubNanofibersOccup Expo Risks Minimization Strategies. 2014; 1-161.
  • 61. Mar NY. Approaches to safe nanotechnology; managing the health and safety concerns associated with engineered nanomaterials. Prospects 2005; 35 (3): 331-342. doi: 10.1007/ s11125-005-4273-1
  • 62. Weichenthal S, Lavigne E, Valois MF, Hatzopoulou M, Van Ryswyk Ket al. Spatial variations in ambient ultrafine particle concentrations and the risk of incident prostate cancer: a casecontrol study. Environmental Research 2017; 156 (March): 374-380. doi: 10.1016/j.envres.2017.03.035
  • 63. Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y et al. Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. Journal of Toxicological Sciences 2010; 35 (1): 107-113. doi: 10.2131/jts.35.107
  • 64. Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Molecular Membrane Biology 2010; 27 (7): 247-259. doi: 10.3109/09687688.2010.522203
  • 65. Bouwmeester H, Van der Zande M, Jepson MA. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology 2018; 10 (1). doi: 10.1002/wnan.1481
  • 66. Cherrie JW, Semple S, Christopher Y, Saleem A, Hughson GW et al. How important is inadvertent ingestion of hazardous substances at work? The Annals of Occupational Hygiene 2006; 50 (7): 693-704. doi: 10.1093/annhyg/mel035
  • 67. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 2005; 23 (10): 1294-301. doi: 10.1038/nbt1138
  • 68. Nahar M, Dutta T, Murugesan S, Asthana A, Mishra D et al. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Critical Reviews Therapeutic Drug Carrier Systems 2006; 23 (4): 259-318. doi: 10.1615/critrevtherdrugcarriersyst.v23.i4.10
  • 69. Qiao Y, Li S, Liu W, Ran M, Lu H, Yang Y. Recent advances of RareEarth ion doped luminescent nanomaterials in perovskite solar cells. Nanomaterials 2018; 8 (1). doi: 10.3390/nano8010043
  • 70. Davide B, Benjamin LD, Nicolas J, Hossein S, Lin-Ping Wu et al. Nanotechnologies for Alzheimer’s disease: diagnosis, therapy and safety issues. Nanomedicine: Nanotechnology, Biology and Medicine 2011; 7 (5): 521-540. doi: 10.1016/j. nano.2011.03.008
  • 71. Banoee M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR et al. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. Journal of Biomedical Materials Research-Part B Applied Biomaterials 2010; 93 (2): 557-61. doi: 10.1002/jbm.b.31615
  • 72. Zhou C, Deng C, Chen X, Zhao X, Chen Y et al. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. Journal of Mechanical Behavior of Biomedical Materials [online] 2015; 48: 1-11. doi: 10.1016/j.jmbbm.2015.04.002
  • 73. Tamjid E, Bagheri R, Vossoughi M, Simchi A. Effect of TiO2 morphology on in vitro bioactivity of polycaprolactone/TiO2 nanocomposites. Materials Letters 2011; 65 (15-16): 2530- 2533. doi: 10.1016/j.matlet.2011.05.037
  • 74. Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: a review. Journal of Oral Biology and Craniofacial Research [online] 2018; 8 (1): 58-67. doi: 10.1016/j. jobcr.2017.12.004
  • 75. García-Contreras R, Argueta-Figueroa L, Mejía-Rubalcava C, Jiménez-Martínez R, Cuevas-Guajardo S et al. Perspectives for the use of silver nanoparticles in dental practice. International Dental Journal 2011; 61 (6): 297-301. doi: 10.1111/j.1875- 595X.2011.00072.x
  • 76. Reis LA, Chiu LLY, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. Journal of Tissue Engineerin and Regenerative Medicine [online] 2016; 10 (1): 11-28. doi: 10.1002/term.1944
  • 77. V. Singh A, A.S A, N. Gade W, Vats T, Lenardi C et al. Nanomaterials: new generation therapeutics in wound healing and tissue repair. Current Nanoscience 2010; 6 (6): 577-86. doi: 10.2174/157341310793348632
  • 78. Nemmar A, Beegam S, Yuvaraju P, Yasin J, Tariq S et al. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Particle and Fibre Toxicology [online] 2016; 13 (1): 1-11. doi: 10.1186/S12989-016-0132-X
  • 79. Magaye RR, Yue X, Zou B, Shi H, Yu H et al. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Internal Journal of Nanomedicine 2014; 9 (1): 1393-1402. doi: 10.2147/ IJN.S56212
  • 80. Arefian Z, Pishbin F, Negahdary M, Ajdary M. Potential toxic effects of zirconia oxide nanoparticles on liver and kidney factors. Biomedical Research 2015; 26 (1): 89-97.
  • 81. Bellusci M, La Barbera A, Padella F, Mancuso M, Pasquo A et al. Biodistribution and acute toxicity of a nanofluid containing manganese iron oxide nanoparticles produced by a mechanochemical process. International Journal of Nanomedicine 2014; 9 (1): 1919-1929. doi: 10.2147/IJN.S56394
  • 82. Babadi VY, Najafi L, Najafi A, Gholami H, Zarji MEB et al. Evaluation of iron oxide nanoparticles effects on tissue and enzymes of thyroid in rats. International Research Journal of Biological Sciences 2013; 2 (7): 67-69.
  • 83. Xu J, Shi H, Ruth M, Yu H, Lazar L et al. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One 2013; 8 (8): 1-6. doi: 10.1371/journal. pone.0070618
  • 84. Awaad A. Histopathological and immunological changes induced by magnetite nanoparticles in the spleen, liver and genital tract of mice following intravaginal instillation. The Journal of Basic & Applied Zoology [online] 2015; 71: 32-47. doi: 10.1016/j.jobaz.2015.03.003
  • 85. Cai X, Lee A, Ji Z, Huang C, Chang CH et al. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. Particle and Fibre Toxicology 2017; 14 (1): 1-11. doi: 10.1186/s12989-017-0193-5
  • 86. Sadeghi L, Babadi VY, Espanani HR. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratislava Medical Journal [online]. 2015; 116 (06): 373-378. doi: 10.4149/ BLL_2015_071
  • 87. Saranya S, Vijayaranai K, Pavithra S, Raihana N, Kumanan K. In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicology Reports [online] 2017; 4: 427-430. doi: 10.1016/j.toxrep.2017.07.005
  • 88. Fartkhooni FM, Noori A, Mohammadi A. Effects of titanium dioxide nanoparticles toxicity on the kidney of male rats. International Journal of Life Sciences 2016; 10 (1): 65-69. doi: 10.3126/ijls.v10i1.14513
  • 89. Raju HB, Hu Y, Vedula A, Dubovy SR, Goldberg JL. Evaluation of magnetic micro- and nanoparticle toxicity to ocular tissues. PLoS One 2011; 6 (5). doi: 10.1371/journal.pone.0017452
  • 90. Kim DK. Nanomedicine for Inner Ear Diseases: A review of recent in vivo studies. Biomed Research International 2017; 2017. doi: 10.1155/2017/3098230
  • 91. Ibrahim AI, Amira FA, Manal MM. Effect of zinc oxide nanoparticles on the structure of testis of adult albino rats and the possible protective role of naringenin. Medical Journal of Cairo University 2019; 87 (September): 3469-3483. doi: 10.21608/mjcu.2019.65644
  • 92. Kong L, Tang M, Zhang T, Wang D, Hu K et al. Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. International Journal of Molecular Sciences 2014; 15 (11): 21253-21269. doi: 10.3390/ijms15112125
  • 93. Gonzalez L, Lison D, Kirsch-Volders M. Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology 2008; 2 (4): 252-273. doi: 10.1080/17435390802464986
  • 94. Yin JJ, Liu J, Ehrenshaft M, Roberts JE, Fu PP et al. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes-Generation of reactive oxygen species and cell damage. Toxicology and Applied Pharmacology [online] 2012; 263 (1): 81-88. doi: 10.1016/j.taap.2012.06.001
  • 95. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M et al. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 2007; 39 (1): 44-84. doi: 10.1016/j. biocel.2006.07.001
  • 96. Meng H, Xia T, George S, Nel AE. A predictive toxicological paradigm for the safety assessment of nanomaterials. American Chemical Society Nano 2009; 3 (7): 1620-1627. doi: 10.1021/ nn9005973
  • 97. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 2005; 113 (7): 823-839. doi: 10.1289/ehp.7339
  • 98. Li Y, Yu S, Wu Q, Tang M, Pu Y et al. Chronic Al2O 3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditiselegans. Journal of Hazardous Materials [online]. 2012; 219-220: 221- 230. doi: 10.1016/j.jhazmat.2012.03.083
  • 99. Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of Applied Toxicology 2013; 33 (2): 78-89. doi: 10.1002/ jat.2792
  • 100. De Moura MB, Dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environmental and Molecular Mutagenesis [online] 2010; 51 (5): 391-405. doi: 10.1002/em.20575
  • 101. Hsin Y-HH, Chen C-FF, Huang S, Shih T-SS, Lai P-SS et al. The apoptotic effect of nanosilver is mediated by a ROS- and JNKdependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters [online] 2008 ; 179 (3): 130-139. doi: 10.1016/j.toxlet.2008.04.015
  • 102. Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G et al. Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells. Toxicology [online] 2010; 276 (2): 95-102. doi: 10.1016/j.tox.2010.07.010
  • 103. Akhtar MJ, Ahamed M, Fareed M, Alrokayan SA, Kumar S. Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. The Journal of Toxicological Sciences 2012; 37 (1): 139-148. doi: 10.2131/jts.37.139
  • 104. Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of Food and Drug Analysis [online] 2014 ; 22 (1): 64-75. doi: 10.1016/j.jfda.2014.01.005
  • 105. Shvedova A, Castranova V, Kisin E, Murray A, Gandelsman V et al. Exposure to carbon nanotube material : assessment of nanotube cytotoxicity using human keratinocyte cells. Journal of Toxocology Environmental Health Part A 2011; 66 (June 2012): 1909-1926. doi: 10.1080/713853956
  • 106. Winnik FM, Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Accounts of Chemical Research [online] 2013; 46 (3): 672-680. doi: 10.1021/ar3000585
  • 107. Fan Z, Lu JG. Zinc oxide nanostructures: synthesis and properties. Journal of Nanoscience and Nanotechnology 2005; 5 (10): 1561- 1573. doi: 10.1166/jnn.2005.182
  • 108. Liu Y, Li X, Bao S, Lu Z, Li Q et al. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticleinduced nanotoxicity. Nanotechnology 2013; 24 (17). doi: 10.1088/0957-4484/24/17/175501
  • 109. Wang Y, Aker WG, Hwang H-M , Yedjou CG, Yu H et al. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Science of The Total Environment [online] 2011; 409 (22): 4753-4762. doi: 10.1016/j.scitotenv.2011.07.039
  • 110. Nel A, Xia T, Madler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311 (5761): 622-627. doi: 10.1055/s2008-1053560
  • 111. Auffan M, Rose J, Wiesner MR, Bottero JY. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environmental Pollution 2009; 157 (4): 1127-1133. doi: 10.1016/j.envpol.2008.10.002
  • 112. Yoshida T, Yoshikawa T, Nabeshi H, Tsutsumi Y. Relation analysis between intracellular distribution of nanomateriarls, ROS generation and DNA damage. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 2012; 132 (3): 295-300. doi: 10.1248/yakushi.132.295
  • 113. Boyoglu C, He Q, Willing G, Boyoglu-Barnum S, Dennis VA et al. Microscopic studies of various sizes of gold nanoparticles and their cellular localizations. International Scholarly Research Notices Nanotechnology 2013; 2013: 1-13. doi: 10.1155/2013/123838
  • 114. Persson H, Købler C, Mølhave K, Samuelson L, Tegenfeldt JO et al. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 2013; 9 (23): 4006–4016. doi: 10.1002/smll.201300644
  • 115. Wang S, Lu W, Tovmachenko O, Rai US, Yu H et al. Challenge in understanding size and shape dependent toxicity of gold nanomaterials in human skin keratinocytes. Chemical Physics Letters [online] 2008; 463 (1-3): 145-149. doi: 10.1016/j. cplett.2008.08.039
  • 116. Mclaren A, Valdes-Solis T, Li G, Tsang SC. Shape and size effects of ZnO nanocrystals on photocatalytic activity. Journal of American Chemical Society 2009; 131 (35): 12540-12541. doi: 10.1021/ja9052703
  • 117. Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S et al. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environmental Science & Technology 2009; 43 (16): 6349-6356. doi: 10.1021/es9010543
  • 118. Lee S, Yun HS, Kim SH. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials [online] 2011; 32 (35): 9434-9443. doi: 10.1016/j.biomaterials.2011.08.042
  • 119. Oh W, Kim S, Choi M, Kim C, Jeong YS et al. Cellular uptake, cytotoxicity, and innate immune response of silica−titania hollow nanoparticles based on size and surface functionality. American Chemical Society Nano [online] 2010; 4 (9): 5301-5313. doi: 10.1021/nn100561e
  • 120. Studer AM, Limbach LK, Van Duc L, Krumeich F, Athanassiou EK et al. Nanoparticle cytotoxicity depends on intracellular solubility: Comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicology Letters [online] 2010; 197 (3): 169-174. doi: 10.1016/j. toxlet.2010.05.012
  • 121. Shen C, James SA, De Jonge MD, Turney TW, Wright PFA et al. Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicological Sciences 2013; 136 (1): 120-130. doi: 10.1093/toxsci/kft187
  • 122. Jastrzebska E, Bazylińska U, Bulka M, Tokarska K, Chudy M et al. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulatedindocyanine-type photosensitizers. Biomicrofluidics 2016; 10 (1): 1-15. doi: 10.1063/1.4941681
  • 123. Daimon T, Nosaka Y. Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence. The Journal of Physical Chemistry C 2007; 111 (11): 4420-4424. doi: 10.1021/ jp070028y
  • 124. Liao KH, Lin YS, MacOsko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Applied and Materials & Interfaces 2011; 3 (7): 2607-2615. doi: 10.1021/am200428v
  • 125. Ray PC, Yu H, Fu PP. Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews 2009; 27 (1): 1-35. doi: 10.1080/10590500802708267
  • 126. Karlsson HL, Cronholm P, Gustafsson J, Mo L. Copper oxide nanoparticles are highly toxic a comparison between metal oxide nanoparticles and carbon nanotubes. Chemical Research in Toxicology 2008; 21: 1726-1732.
  • 127. Zhu X, Hondroulis E, Liu W, Li CZ. Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small 2013; 9 (9-10): 1821-1830. doi: 10.1002/ smll.201201593
  • 128. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S et al. Multiwalled carbon nanotubes induce T lymphocyte apoptosis. Toxicology Letters 2006; 160 (2): 121-126. doi: 10.1016/j. toxlet.2005.06.020
  • 129. Thomas DG, Smith JN, Thrall BD, Baer DR, Jolley H et al. ISD3: A particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Particle and Fibre Toxicology 2018;15 (1): 1-22. doi: 10.1186/s12989-018-0243-7
  • 130. Arora S, Rajwade JM, Paknikar KM. Nanotoxicology and in vitro studies: the need of the hour. Toxicology and Applied Pharmacology [online] 2012; 258 (2): 151-165. doi: 10.1016/j. taap.2011.11.010
  • 131. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S et al. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicology in Vitro [online] 2011; 25 (1): 231-241. doi: 10.1016/j.tiv.2010.11.008
  • 132. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S et al. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Molecular Pharmaceutics [online] 2009; 6 (5): 1388-1401. doi: 10.1021/mp900056g
  • 133. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF et al. Cellular localisation of a water-soluble fullerene derivative. Biochemical and Biophysical Research Communications 2002; 294 (1): 116-119. doi: 10.1016/S0006-291X(02)00445-X
  • 134. Fiorito S, Serafino A, Andreola F, Bernier P. Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 2006; 44 (6): 1100-1105. doi: 10.1016/j. carbon.2005.11.009
  • 135. Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. American Chemical Society Nano 2011; 5 (7): 5717-5728. doi: 10.1021/ nn2013904
  • 136. Gonzalez L, Sanderson BJS, Kirsch-Volders M. Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 2011; 26 (1): 185-191. doi: 10.1093/mutage/geq088
  • 137. Karlsson HL. The comet assay in nanotoxicology research. Analytical and Bioanalytical Chemistry 2010; 398 (2): 651-666. doi: 10.1007/s00216-010-3977-0
  • 138. Uo M, Tamura K, Sato Y, Yokoyama A, Watari F et al. The cytotoxicity of metal-encapsulating carbon nanocapsules. Small 2005; 1 (8-9): 816-819. doi: 10.1002/smll.200400143
  • 139. Muller J, Huaux F, Moreau N, Misson P, Heilier JF et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicology and Applied Pharmacology 2005; 207 (3): 221-231. doi: 10.1016/j.taap.2005.01.008
  • 140. Flahaut E, Durrieu MC, Remy-Zolghadri M, Bareille R, Baquey C. Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon 2006; 44 (6): 1093-1099. doi: 10.1016/j.carbon.2005.11.007
  • 141. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM et al. The differential cytotoxicity of water-soluble fullerenes. Nano Letters [online] 2004; 4 (10): 1881-1887. doi: 10.1021/ nl0489586
  • 142. Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M et al. Quantum dots for human mesenchymal stem cells labeling. a size-dependent autophagy activation. Nano Letters [online] 2006; 6 (12): 2826-2832. doi: 10.1021/nl0619711
  • 143. Pantarotto D, Briand J-P, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications [online] 2004; 10 (1): 16. doi: 10.1039/b311254c
  • 144. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology 2007; 2 (2): 108-113. doi: 10.1038/ nnano.2006.209
  • 145. Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 2006; 44 (6): 1070-1078. doi: 10.1016/j.carbon.2005.11.004
  • 146. Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SS. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology 2008; 19 (7). doi: 10.1088/0957-4484/19/7/075104
  • 147. Fernández-Urrusuno R, Fattal E, Féger J, Couvreur P, Thérond P. Evaluation of hepatic antioxidant systems after intravenous administration of polymeric nanoparticles. Biomaterials 1997; 18 (6): 511-517. doi: 10.1016/S0142-9612(96)00178-0
  • 148. Zhang M, Xu C, Jiang L, Qin J. A 3D human lung-on-achip model for nanotoxicity testing. Toxicology Research (Cambridge) 2018; 7 (6): 1048-1060. doi: 10.1039/c8tx00156a
  • 149. Yin F, Zhu Y, Zhang M, Yu H, Chen W et al. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicology in Vitro [online] 2019; 54: 105-113. doi: 10.1016/j.tiv.2018.08.014
  • 150. Shah P, Kaushik A, Zhu X, Zhang C, Li CZ. Chip based single cell analysis for nanotoxicity assessment. Analyst 2014; 139 (9): 2088-2098. doi: 10.1039/c3an02280c
  • 151. Dusinska M, Boland S, Saunders M, Juillerat-Jeanneret L, Tran L et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST. Nanotoxicology 2015; 9 (S1): 118-132. doi: 10.3109/17435390.2014.991431
  • 152. Lan J, Gou N, Gao C, He M, Gu AZ. Comparative and mechanistic genotoxicity assessment of nanomaterials via a quantitative toxicogenomics approach across multiple species. Environmental Science & Technology 2014; 48 (21): 12937- 12945. doi: 10.1021/es503065q
  • 153. Smolkova B, Dusinska M, Gabelova A. Nanomedicine and epigenome. possible health risks [online]. Food and Chemical Toxicology 2017; 109: 780-796. doi: 10.1016/j.fct.2017.07.020
  • 154. Paunovska K, Loughrey D, Sago CD, Langer R, Dahlman JE. Using large datasets to understand nanotechnology. Advanced Materials 2019; 31 (43): 1-16. doi: 10.1002/adma.201902798
  • 155. Gallud A, Klöditz K, Ytterberg J, Östberg N, Katayama S et al. Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Scientific Reports 2019; 9 (1): 1-19. doi: 10.1038/s41598-019-40579-6
  • 156. Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC et al. Genetic determinants of susceptibility to silver nanoparticleinduced acute lung inflammation in mice. The Journal of the Federation of American Societies for Experimental Biology 2017; 31 (10): 4600-4611. doi: 10.1096/fj.201700187R
APA Akcan R, Aydogan H, Yıldırım M, TAŞTEKİN B, SAGLAM N (2020). Nanotoxicity: a challenge for future medicine. , 1180 - 1196. 10.3906/sag-1912-209
Chicago Akcan Ramazan,Aydogan Halit Canberk,Yıldırım Mahmut Şerif,TAŞTEKİN Burak,SAGLAM NECDET Nanotoxicity: a challenge for future medicine. (2020): 1180 - 1196. 10.3906/sag-1912-209
MLA Akcan Ramazan,Aydogan Halit Canberk,Yıldırım Mahmut Şerif,TAŞTEKİN Burak,SAGLAM NECDET Nanotoxicity: a challenge for future medicine. , 2020, ss.1180 - 1196. 10.3906/sag-1912-209
AMA Akcan R,Aydogan H,Yıldırım M,TAŞTEKİN B,SAGLAM N Nanotoxicity: a challenge for future medicine. . 2020; 1180 - 1196. 10.3906/sag-1912-209
Vancouver Akcan R,Aydogan H,Yıldırım M,TAŞTEKİN B,SAGLAM N Nanotoxicity: a challenge for future medicine. . 2020; 1180 - 1196. 10.3906/sag-1912-209
IEEE Akcan R,Aydogan H,Yıldırım M,TAŞTEKİN B,SAGLAM N "Nanotoxicity: a challenge for future medicine." , ss.1180 - 1196, 2020. 10.3906/sag-1912-209
ISNAD Akcan, Ramazan vd. "Nanotoxicity: a challenge for future medicine". (2020), 1180-1196. https://doi.org/10.3906/sag-1912-209
APA Akcan R, Aydogan H, Yıldırım M, TAŞTEKİN B, SAGLAM N (2020). Nanotoxicity: a challenge for future medicine. Turkish Journal of Medical Sciences, 50(4), 1180 - 1196. 10.3906/sag-1912-209
Chicago Akcan Ramazan,Aydogan Halit Canberk,Yıldırım Mahmut Şerif,TAŞTEKİN Burak,SAGLAM NECDET Nanotoxicity: a challenge for future medicine. Turkish Journal of Medical Sciences 50, no.4 (2020): 1180 - 1196. 10.3906/sag-1912-209
MLA Akcan Ramazan,Aydogan Halit Canberk,Yıldırım Mahmut Şerif,TAŞTEKİN Burak,SAGLAM NECDET Nanotoxicity: a challenge for future medicine. Turkish Journal of Medical Sciences, vol.50, no.4, 2020, ss.1180 - 1196. 10.3906/sag-1912-209
AMA Akcan R,Aydogan H,Yıldırım M,TAŞTEKİN B,SAGLAM N Nanotoxicity: a challenge for future medicine. Turkish Journal of Medical Sciences. 2020; 50(4): 1180 - 1196. 10.3906/sag-1912-209
Vancouver Akcan R,Aydogan H,Yıldırım M,TAŞTEKİN B,SAGLAM N Nanotoxicity: a challenge for future medicine. Turkish Journal of Medical Sciences. 2020; 50(4): 1180 - 1196. 10.3906/sag-1912-209
IEEE Akcan R,Aydogan H,Yıldırım M,TAŞTEKİN B,SAGLAM N "Nanotoxicity: a challenge for future medicine." Turkish Journal of Medical Sciences, 50, ss.1180 - 1196, 2020. 10.3906/sag-1912-209
ISNAD Akcan, Ramazan vd. "Nanotoxicity: a challenge for future medicine". Turkish Journal of Medical Sciences 50/4 (2020), 1180-1196. https://doi.org/10.3906/sag-1912-209