Yıl: 2019 Cilt: 29 Sayı: 2 Sayfa Aralığı: 151 - 158 Metin Dili: İngilizce DOI: 10.5137/1019-5149.JTN.21835-17.3 İndeks Tarihi: 06-09-2020

The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor

Öz:
AIM: To correlate the anatomical variants of the circle of Willis with their effects on the hemodynamic and geometrical parametersresponsible for the pathogenesis of neurological diseases.MATERIAL and METHODS: The circle of Willis and the proximal segments of the main arteries were dissected and measured onten formalin-fixed human brains. The anatomical variants were systematized using descriptive statistics. The mathematical modelsfor brain perfusion and wall shear stress were developed by optimally approximating resistance to flow, vascular conductance, andbranching.RESULTS: Eighty percent of the brains presented asymmetries, especially in the posterior communicating (70%) and anteriorcerebral (40%) arteries. The posterior circulation had more variations (65.21%). Nine hypoplastic vessels were found in 7 brains.Atypical origins were observed in eight specimens. According to the mathematical models, which integrated each anatomicalchange in the global circle of Willis anatomy, the circle of Willis’ geometry could represent a risk factor for intracranial aneurysms andatherosclerosis, mostly when hypoplastic arteries are present, due to high resistance to flow and imbalanced bifurcation geometry.Accessory vessels are less associated with cerebrovascular risk.CONCLUSION: We described anatomical variants of both the anterior and posterior circulations and their specific effects on thehemodynamic balance of cerebral blood flow.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Alastruey J, Parker KH, Peiró J, Byrd SM, Sherwin SJ: Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. J Biomech 40: 1794-1805, 2007
  • 2. Alfano JM, Kolega J, Natarajan SK, Xiang J, Paluch RA, Levy EI, Siddiqui AH, Meng H: Intracranial aneurysms occur more frequently at bifurcation sites that typically experience higher hemodynamic stresses. Neurosurgery 73: 497-505, 2013
  • 3. Ansari S, Dadmehr M, Eftekhar B, McConnell DJ, Ganji S, Azari H, Kamali-Ardakani S, Hoh BL, Mocco J: A simple technique for morphological measurement of cerebral arterial circle variations using public domain software (Osiris). Anat Cell Biol 44: 324-330, 2011
  • 4. Bourcier R, Lenoble C, Guyomarch-Delasalle B, DaumasDuport B, Papagiannaki C, Redon R, Desal H: Is there an inherited anatomical conformation favoring aneurysmal formation of the anterior communicating artery? J Neurosurg 126: 1598-1605, 2017
  • 5. Cassot F, Zagzoule M, Marc-Vergnes JP: Hemodynamic role of the circle of Willis in stenoses of internal carotid arteries. An analytical solution of a linear model. J Biomech 33: 395-405, 2000
  • 6. Cebral JR, Raschi M: Suggested connections between risk factors of intracranial aneurysms: A review. Ann Biomed Eng 41:1366-1383, 2013
  • 7. Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R, Mannini L: Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis 214: 249-256, 2011
  • 8. Cieslicki K, Ciesla D: Investigations of flow and pressure distributions in physical model of the circle of Willis. J Biomech 38: 2302-2310, 2005
  • 9. Cucchiara B, Detre J: Migraine and circle of Willis anomalies. Med Hypotheses 70: 860-865, 2008
  • 10. Cucchiara B, Wolf RL, Nagae L, Zhang Q, Kasner S, Datta R, Aguirre GK, Detre JA: Migraine with aura is associated with an incomplete circle of Willis: Results of a prospective observational study. PLoS One 26: e71007, 2013
  • 11. David T, Moore S: Modeling perfusion in the cerebral vasculature. Med Eng Phys 30: 1227–1245, 2008
  • 12. Devault K, Gremaud PA, Novak V, Olufsen MS, Vernieres G, Zhao P: Blood flow in the circle of Willis: Modeling and calibration. Multiscale Model Simul 27: 888-909, 2008
  • 13. Dimitriu CrP, Ionescu C, Bordei P, Bulbuc I: The role of anatomical anomalies in anterior communicating artery aneurysm rupture. ARS Med Tomit 3: 147-153, 2013
  • 14. Grinberg L, Anor T, Cheever E, Madsen JR, Karniadakis GE: Simulation of the human intracranial arterial tree. Philos Trans A Math Phys Eng Sci 13: 2371-2386, 2009
  • 15. Gunnal SA, Farooqui MS, Wabale RN: Anatomical variations of the circulus arteriosus in cadaveric human brains. Neurol Res Int 2014: 687281, 2014
  • 16. Hall JE: Guyton and Hall Textbook of Medical Physiology, 12th ed. Elsevier, Saunders, 2010
  • 17. Hartkamp MJ, van Der Grond J, van Everdingen KJ, Hillen B, Mali WP: Circle of Willis collateral flow investigated by magnetic resonance angiography. Stroke 30: 2671-2678, 1999
  • 18. Hendrikse J, van Raamt AF, van der Graaf Y, Mali WP, van der Grond J: Distribution of cerebral blood flow in the circle of Willis. Radiology 235: 184-189, 2005
  • 19. Hoksbergen AW, Majoie CB, Hulsmans FJ, Legemate DA: Assessment of the collateral function of the circle of Willis: Three-dimensional time-of-flight MR angiography compared with transcranial color-coded duplex sonography. Am J Neuroradiol 24:456-462, 2003
  • 20. Ingebrigtsen T, Morgan MK, Faulder K, Ingebrigtsen L, Sparr T, Schirmer H: Bifurcation geometry and the presence of cerebral artery aneurysms. J Neurosurg 101: 108-113, 2004
  • 21. Iqbal S: A comprehensive study of the anatomical variations of the circle of Willis in adult human brains. J Clin Diagn Res 7: 2423-2427, 2013
  • 22. Jalali Kondori B, Azemati F, Dadseresht S: Magnetic resonance angiographic study of anatomic variations of circle of Willis in a population in Tehran. Arch Iran Med 20: 235-239, 2017
  • 23. Kamath S: Observations on the length and diameter of vessels forming the circle of Willis. J Anat 133: 419-423, 1981
  • 24. Karatas A, Yilmaz H, Coban G, Koker M, Uz A: The anatomy of circulus arteriosus cerebri (circle of Willis): A study in Turkish population. Turk Neurosurg 26: 54-61, 2016
  • 25. Kayembe KN, Sasahara M, Hazama F: Cerebral aneurysms and variations in the circle of Willis. Stroke 15: 846-850, 1984
  • 26. Lazzaro MA, Ouyang B, Chen M: The role of circle of Willis anomalies in cerebral aneurysm rupture. J Neurointerv Surg 4: 22-26, 2012
  • 27. Liang F, Fukasaku K, Liu H, Takagi S: A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery. Biomed Eng Online 10:84, 2011
  • 28. Lodi CA, Ursino M: Hemodynamic effect of cerebral vasospasm in humans: A modeling study. Ann Biomed Eng 27: 257-273, 1999
  • 29. Nixon AM, Gunel M, Sumpio BE: The critical role of hemodynamics in the development of cerebral vascular disease. J Neurosurg 112: 1240-1253, 2010
  • 30. Nordon, DG, Rodrigues Júnior OF: Variations in the brain circulation – the circle of Willis. J Morphol Sci 29: 243-247, 2012
  • 31. Orakdogen M, Emon ST, Somay H, Engin T, Is M, Hakan T: Vascular variations associated with intracranial aneurysms. Turk Neurosurg 27: 853-862, 2017
  • 32. Papantchev V, Hristov S, Todorova D, Naydenov E, Paloff A, Nikolov D, Tschirkov A, Ovtscharoff W: Some variations of the circle of Willis, important for cerebral protection in aortic surgery-a study in Eastern Europeans. Eur J Cardiothorac Surg 31: 982-989, 2007
  • 33. Papantchev V, Stoinova V, Aleksandrov A, TodorovaPapantcheva D, Hristov S, Petkov D, Nachev G, Ovtscharoff W: The role of Willis circle variations during unilateral selective cerebral perfusion: A study of 500 circles. Eur J Cardiothorac Surg 44: 743-753, 2013
  • 34. Pascalau R, Aldea CC, Padurean VA, Szabo B: Comparative study of the major white matter tracts anatomy in equine, feline and canine brains by use of the fibre dissection technique. Anat Histol Embryol 45: 373–385, 2016
  • 35. Pascalau R, Szabo B: Fibre dissection and sectional study of the major porcine cerebral white matter tracts. Anat Histol Embryol 46: 378–390, 2017
  • 36. Rossitti S, Löfgren J: Optimality principles and flow orderliness at the branching points of cerebral arteries. Stroke 24:1029- 1032, 1993
  • 37. Szabo B, Szabo I, Crişan D, Stefănuţ C: Idiopathic orbital inflammatory pseudotumor: Case report and review of the literature. Rom J Morphol Embryol 523: 927-930, 2011
  • 38. Szabo BA, Pascalau R, Padurean VA: Morphometric study of the human brainstem and its neurovascular relations. Turk Neurosurg 2017 (Epub Ahead of print)
  • 39. Yeniceri IO, Cullu N, Deveer M, Yeniceri EN: Circle of Willis variations and artery diameter measurements in the Turkish population. Folia Morphol (Warsz) 76: 420-425, 2017
  • 40. Zamir M: Local geometry of arterial branching. Bull Math Biol 44: 597-607, 1982
  • 41. Zaninovich OA, Ramey WL, Walter CM, Dumont TM: Completion of the circle of Willis varies by gender, age, and indication for computed tomography angiography. World Neurosurg 106: 953-963, 2017
APA PASCALAU R, PADUREAN V, BARTOS D, BARTOS A, SZABO B (2019). The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. , 151 - 158. 10.5137/1019-5149.JTN.21835-17.3
Chicago PASCALAU Raluca,PADUREAN Vlad Adrian,BARTOS Dana,BARTOS Adrian,SZABO Bianca Aurora The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. (2019): 151 - 158. 10.5137/1019-5149.JTN.21835-17.3
MLA PASCALAU Raluca,PADUREAN Vlad Adrian,BARTOS Dana,BARTOS Adrian,SZABO Bianca Aurora The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. , 2019, ss.151 - 158. 10.5137/1019-5149.JTN.21835-17.3
AMA PASCALAU R,PADUREAN V,BARTOS D,BARTOS A,SZABO B The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. . 2019; 151 - 158. 10.5137/1019-5149.JTN.21835-17.3
Vancouver PASCALAU R,PADUREAN V,BARTOS D,BARTOS A,SZABO B The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. . 2019; 151 - 158. 10.5137/1019-5149.JTN.21835-17.3
IEEE PASCALAU R,PADUREAN V,BARTOS D,BARTOS A,SZABO B "The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor." , ss.151 - 158, 2019. 10.5137/1019-5149.JTN.21835-17.3
ISNAD PASCALAU, Raluca vd. "The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor". (2019), 151-158. https://doi.org/10.5137/1019-5149.JTN.21835-17.3
APA PASCALAU R, PADUREAN V, BARTOS D, BARTOS A, SZABO B (2019). The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. Turkish Neurosurgery, 29(2), 151 - 158. 10.5137/1019-5149.JTN.21835-17.3
Chicago PASCALAU Raluca,PADUREAN Vlad Adrian,BARTOS Dana,BARTOS Adrian,SZABO Bianca Aurora The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. Turkish Neurosurgery 29, no.2 (2019): 151 - 158. 10.5137/1019-5149.JTN.21835-17.3
MLA PASCALAU Raluca,PADUREAN Vlad Adrian,BARTOS Dana,BARTOS Adrian,SZABO Bianca Aurora The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. Turkish Neurosurgery, vol.29, no.2, 2019, ss.151 - 158. 10.5137/1019-5149.JTN.21835-17.3
AMA PASCALAU R,PADUREAN V,BARTOS D,BARTOS A,SZABO B The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. Turkish Neurosurgery. 2019; 29(2): 151 - 158. 10.5137/1019-5149.JTN.21835-17.3
Vancouver PASCALAU R,PADUREAN V,BARTOS D,BARTOS A,SZABO B The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor. Turkish Neurosurgery. 2019; 29(2): 151 - 158. 10.5137/1019-5149.JTN.21835-17.3
IEEE PASCALAU R,PADUREAN V,BARTOS D,BARTOS A,SZABO B "The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor." Turkish Neurosurgery, 29, ss.151 - 158, 2019. 10.5137/1019-5149.JTN.21835-17.3
ISNAD PASCALAU, Raluca vd. "The Geometry of the Circle of Willis Anatomical Variants as a Potential Cerebrovascular Risk Factor". Turkish Neurosurgery 29/2 (2019), 151-158. https://doi.org/10.5137/1019-5149.JTN.21835-17.3