Yıl: 2018 Cilt: 7 Sayı: 2 Sayfa Aralığı: 118 - 135 Metin Dili: Türkçe DOI: 10.5336/pharmsci.2018-59816 İndeks Tarihi: 08-09-2020

Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri

Öz:
Bitki antioksidanları, en az yan etkileri ve besin takviyesi olarak önemli rolleri nedeni ile sonzamanlarda popülarite kazanmıştır. Timokinon, Nigella sativa L. (çörek otu) tohumunun uçucu yağından elde edilen ana aktif fenolik bir bileşik olup yüksek antioksidan özellikleri nedeni ile birçok hastalıkta geleneksel olarak yaygın kullanılmaktadır. İn vitro ve in vivo çalışmalarda,timokinonun antiinflamatuar, antimikrobiyal ve antikanser gibi birçok faydalı etkilere sahip olabildiği ileri sürülmektedir. Timokinon toksisitesi üzerine yapılan çalışmalarda, toksik etkileri ancakçok yüksek dozlarında gösterilebilmiştir. Timokinon, yüksek biyolojik etkinliği ve düşük sistemiktoksisitesi ile dikkate değer bilimsel ilgi çekmektedir; bu durum, klasik terapötik ilaçlara umut verici bir alternatif olabilmektedir. Timokinon büyük olasılıkla birçok moleküler hedefleri değiştirmektedir, ancak timokinonun etkileri altında yatan bu moleküler mekanizmalar tam olarakanlaşılmamıştır. Bu geniş etkilerine rağmen timokinonun çeşitli metabolik yolaklar üzerindeki etkilerinin daha iyi anlaşılabilmesi açısından daha ileri çalışmalara gereksinim olduğu görülmektedir.Bu çalışmada, Nigella sativa L. tohumlarının aktif maddesi olan timokinonun farmakolojik ve toksikolojik özelliklerinin kapsamlı olarak değerlendirilmesi amaçlanmıştır. Bulgular, timokinonunklinik araştırmalarda yeni bir ilaç olarak geliştirilmesi gerektiğini göstermektedir.
Anahtar Kelime:

Potential Effects of Thymoquinone the Active Constituent of Black Seed (Nigella Sativa L.) on Human Health

Öz:
Plant antioxidants have recently gained popularity due to their important role as dietary supplements with minimal side effects. Thymoquinone, the main active phenolic compound from the volatile oil of Nigella sativa L. seeds has been commonly used traditionally for several diseases due its high antioxidant properties. In in vitro and in vivo studies, thymoquinone has suggested to have many beneficial effects such as antiinflamatory, antimicrobial, and anticancer effects. In the studies on thymoquinone toxicity, its toxic effects could only be demonstrated at very high doses. Thymoquinone has attracted noteworthy scientific attention for its high biological activity and low systemic toxicity, which might be a promising alternative to conventional therapeutic drugs. It is likely that thymoquinone modifies a number of molecular targets; however, the molecular mechanisms underlying the effects of thymoquinone remain not fully understood. Despite these wide effects, it seems that the further study is needed to better understand the effects of thymoquinone on various metabolic pathways. In this review, the pharmacological and toxicological property of thymoquinone, which is the active ingredient of Nigella sativa L. seeds is evaluated. The evidence shows that thymoquinone should be developed as a novel drug in clinical trials.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Forouzanfar F, Bazzaz BS, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 2014;17(12):929- 38.
  • 2. Khader M, Eckl PM. Thymoquinone: an emerging natural drug with a wide range of medical applications. Iran J Basic Med Sci 2014;17(12):950-7.
  • 3. Salem ML. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int Immunopharmacol 2005;5(13-14):1749-70.
  • 4. Darakhshan S, Bidmeshki Pour A, Hosseinzadeh Colagar A, Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol Res 2015;95-96:138-58.
  • 5. El-Tahir KEH, Bakeet DM. The black seed Nigella sativa Linnaeus--a mine for multi cure: a plea for urgent clinical evaluation of its volatile oil. J Taibah University Med Sci 2006;1:1-19.
  • 6. Shafiq H, Ahmad A, Masud T, Kalem M. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa. Iran J Basic Med Sci 2014;17(12):967-79.
  • 7. Gerige SJ, Gerige MKY, Rao M, Ramanjaneyulu. GC-MS analysis of Nigella sativa seeds and antimicrobial activity of its volatile oil. Braz Arch Biol Technol 2009;52(5):1189-92.
  • 8. Mollazadeh H, Hosseinzadeh H. The protective effect of Nigella sativa against liver injury: a review. Iran J Basic Med Sci 2014;17(12): 958-66.
  • 9. Abdel-Fattah AM, Matsumoto K, Watanabe H. Antinociceptive effects of Nigella sativa oil and its major component, thymoquinone, in mice. Eur J Pharmacol 2000;400(1):89-97.
  • 10. Salmani JM, Asghar S, Lv H, Zhou J. Aqueous solubility and degradation kinetics of the phytochemical anticancer thymoquinone; probing the effects of solvents, pH and light. Molecules 2014;19(5):5925-39.
  • 11. Odeh F, Ismail SI, Abu-Dahab R, Mahmoud IS, Al Bawab A. Thymoquinone in liposomes: a study of loading efficiency and biological activity towards breast cancer. Drug Deliv 2012;19(8):371-7.
  • 12 Singh A, Ahmad I, Akhter S, Jain GK, Iqbal Z, Talegaonkar S, et al. Nanocarrier based formulation of thymoquinone improves oral delivery: stability assessment, in vitro and in vivo studies. Colloids Surf B Biointerfaces 2013;102:822-32.
  • 13. Kahila MMH, Najy AM, Rahaie M, Mir-Derikvand M. Effect of nanoparticle treatment on expression of a key gene involved in thymoquinone biosynthetic pathway in Nigella sativa L. Nat Prod Res 2017;27:1-5.
  • 14. Alkharfy KM, Ahmad A, Khan RM, Al-Shagha WM. Pharmacokinetic plasma behaviors of intravenous and oral bioavailability of thymoquinone in a rabbit model. Eur J Drug Metab Pharmacokinet 2015;40(3):319-23.
  • 15. Kaseb AO, Chinnakannu K, Chen D, Sivanandam A, Tejwani S, Menon M, et al. Androgen receptor and E2F-1 targeted thymoquinone therapy for hormone-refractory prostate cancer. Cancer Res 2007;67(16):7782-8.
  • 16. Roepke M, Diestel A, Bajbouj K, Walluscheck D, Schonfeld P, Roessner A, et al. Lack of p53 augments thymoquinone-induced apoptosis and caspase activation in human osteosarcoma cells. Cancer Biol Ther 2007;6(2):160-9.
  • 17. Gali-Muhtasib H, Kuester D, Mawrin C, Bajbouj K, Diestel A, Ocker M, et al. Thymoquinone triggers inactivation of the stress response pathway sensor CHEK1 and contributes to apoptosis in colorectal cancer cells. Cancer Res 2008;68(14):5609-18.
  • 18. Arafa el-SA, Zhu Q, Shah ZI, Wani G, Barakat BM, Racoma I, et al. Thymoquinone up-regulates PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat Res 2010;706(1-2):28-35.
  • 19. Alhosin M, Ibrahim A, Boukhari A, Sharif T, Gies JP, Auger C, et al. Anti-neoplastic agent thymoquinone induces degradation of α and β tubulin proteins in human cancer cells without affecting their level in normal human fibroblasts. Invest New Drugs 2012;30(5):1813-9.
  • 20. Arslan BA, Isik FB, Gur H, Ozen F, Catal T. Apoptotic effect of Nigella sativa on human lymphoma U937 cells. Pharmacogn Mag 2017;13(Suppl 3):628-32.
  • 21. Banerjee S, Kaseb AO, Wang Z, Kong D, Mohammad M, Padhye S, et al. Antitumor activity of gemcitabine and oxaliplatin is augmented by thymoquinone in pancreatic cancer. Cancer Res 2009;69(13):5575-83.
  • 22. Li F, Rajendran P, Sethi G. Thymoquinone inhibits proliferation, induces apoptosis and chemosensitizes human multiple myeloma cells through suppression of signal transducer and activator of transcription 3 activation pathway. Br J Pharmacol 2010;161(3):541-54.
  • 23. Hussain AR, Ahmed M, Ahmed S, Manogaran P, Platanias LC, Alvi SN, et al. Thymoquinone suppresses growth and induces apoptosis via generation of reactive oxygen species in primary effusion lymphoma. Free Radic Biol Med 2011;50(8):978-87.
  • 24. Pang J, Shen N, Yan F, Zhao N, Dou L, Wu LC, et al. Thymoquinone exerts potent growthsuppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells. Oncotarget 2017;8(21):34453-67.
  • 25. Majdalawieh AF, Fayyad MW, Nasrallah GK. Anti-cancer properties and mechanisms of action of thymoquinone, the major active ingredient of Nigella sativa. Crit Rev Food Sci Nutr 2017;57(18):3911-28.
  • 26. Zubair H, Khan HY, Sohail A, Azim S, Ullah MF, Ahmad A, et al. Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: putative anticancer mechanism of antioxidants. Cell Death Dis 2013;4: e660.
  • 27. El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M, et al. Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 2010;15(2):183-95.
  • 28. Jafri SH, Glass J, Shi R, Zhang S, Prince M, Kleiner-Hancock H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: in vitro and in vivo. J Exp Clin Cancer Res 2010;29:87.
  • 29. Lei X, Lv X, Liu M, Yang Z, Ji M, Guo X, et al. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem Biophys Res Commun 2012;417(2):864-8.
  • 30. Paramasivam A, Sambantham S, Shabnam J, Raghunandhakumar S, Anandan B, Rajiv R, et al. Anti-cancer effects of thymoquinone in mouse neuroblastoma (Neuro-2a) cells through caspase-3 activation with down-regulation of XIAP. Toxicol Lett 2012;213(2):151- 9.
  • 31. Dragoni S, Laforenza U, Bonetti E, Lodola F, Bottino C, Berra-Romani R, et al. Vascular endothelial growth factor stimulates endothelial colony forming cells proliferation and tubulogenesis by inducing oscillations in intracellular Ca2+ concentration. Stem Cells 2011;29(11):1898-907.
  • 32. Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, et al. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther 2008;7(7):1789-96.
  • 33. Peng L, Liu A, Shen Y, Xu HZ, Yang SZ, Ying XZ, et al. Antitumor and anti-angiogenesis effects of thymoquinone on osteosarcoma through the NF-κB pathway. Oncol Rep 2013;29(2):571-8.
  • 34. Kolli-Bouhafs K, Boukhari A, Abusnina A, Velot E, Gies JP, Lugnier C, et al. Thymoquinone reduces migration and invasion of human glioblastoma cells associated with FAK, MMP-2 and MMP-9 down-regulation. Invest New Drugs 2012;30(6):2121-31.
  • 35. Ahmad I, Muneer KM, Tamimi IA, Chang ME, Ata MO, Yusuf N. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome. Toxicol Appl Pharmacol 2013;270(1):70-6.
  • 36. El-Abhar HS, Abdallah DM, Saleh S. Gastroprotective activity of Nigella sativa oil and its constituent, thymoquinone, against gastric mucosal injury induced by ischaemia/reperfusion in rats. J Ethnopharmacol 2013;84(2- 3):251-8.
  • 37. Magdy MA, Hanan el-A, Nabila el-M. Thymoquinone: novel gastroprotective mechanisms. Eur J Pharmacol 2012;697(1-3):126-31.
  • 38. Zafeer MF, Waseem M, Chaudhary S, Parvez S. Cadmium-induced hepatotoxicity and its abrogation by thymoquinone. J Biochem Mol Toxicol 2012;26(5):199-205.
  • 39. Nagi MN, Mansour MA. Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection. Pharmacol Res 2000;41(3):283-9.
  • 40. Rasheed Z, Altorbag AA, Al-Bossier AS, Alnasser NA, Alkharraz OS, Altuwayjiri KM, et al. Protective potential of thymoquinone against peroxynitrite induced modifications in histone H2A: in vitro studies. Int J Biol Macromol 2018;112:169-74.
  • 41. Mahmoud MR, El-Abhar HS, Saleh S. The effect of Nigella sativa oil against the liver damage induced by Schistosoma mansoni infection in mice. J Ethnopharmacol 2002; 79(1):1-11.
  • 42. Yildiz F, Coban S, Terzi A, Ates M, Aksoy N, Cakir H, et al. Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver. World J Gastroenterol 2008;14(33): 5204-9.
  • 43. Awad AS, Kamel R, Sherief MA. Effect of thymoquinone on hepatorenal dysfunction and alteration of CYP3A1 and spermidine/spermine N-1-acetyl-transferase gene expression induced by renal ischaemiareperfusion in rats. J Pharm Pharmacol 2011;63(8):1037-42.
  • 44. Daba MH, Abdel-Rahman MS. Hepatoprotective activity of thymoquinone in isolated rat hepatocytes. Toxicol Lett 1998;95(1):23-9.
  • 45. Khalife KH, Lupidi G. Nonenzymatic reduction of thymoquinone in physiological conditions. Free Radic Res 2007;41(2):153-61.
  • 46. Farooqui Z, Shahid F, Khan AA, Khan F. Oral administration of Nigella sativa oil and thymoquinone attenuates long term cisplatin treatment induced toxicity and oxidative damage in rat kidney. Biomed Pharmacother 2017;96:912-23.
  • 47. Jrah-Harzallah H, Ben-Hadj-Khalifa S, Almawi WY, Maaloul A, Houas Z, Mahjoub T. Effect of thymoquinone on 1,2-dimethyl-hydrazineinduced oxidative stress during initiation and promotion of colon carcinogenesis. Eur J Cancer 2013;49(5):1127-35.
  • 48. Kanter M. Nigella sativa and derived thymoquinone prevents hippocampal neurodegeneration after chronic toluene exposure in rats. Neurochem Res 2008;33(3):579-88.
  • 49. Ahlatci A, Kuzhan A, Taysi S, Demirtas OC, Alkis HE, Tarakcioglu M, et al. Radiation-modifying abilities of Nigella sativa and thymoquinone on radiation-induced nitrosative stress in the brain tissue. Phytomedicine 2014;21(5):740-4.
  • 50. Khan MA, Ashfaq MK, Zuberi HS, Mahmood MS, Gilani AH. The in vivo antifungal activity of the aqueous extract from Nigella sativa seeds. Phytother Res 2013;17(2):183-6.
  • 51. Chaieb K, Kouidhi B, Jrah H, Mahdouani K, Bakhrouf A. Antibacterial activity of thymoquinone, an active principle of Nigella sativa and its potency to prevent bacterial biofilm formation. BMC Complement Altern Med 2011;11:29.
  • 52. Hull Vance S, Benghuzzi H, Tucci M. Inhibition of bacterial attachment to kidney epithelial cells using thymoquinone-biomed 2010. Biomed Sci Instrum 2010;46:69-74.
  • 53. Rifaioglu MM, Nacar A, Yuksel R, Yonden Z, Karcioglu M, Zorba OU, et al. Antioxidative and anti-inflammatory effect of thymoquinone in an acute Pseudomonas prostatitis rat model. Urol Int 2013;91(4):474-81.
  • 54. Piras A, Rosa A, Marongiua B, Porcedda S, Falconieri D, Dessi MA, et al. Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide. Ind Crops Prod 2013;46:317-23.
  • 55. Mahmoudvand H, Sepahvand A, Jahanbakhsh S, Ezatpour B, Ayatollahi Mousavi SA. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains. J Mycol Med 2014;24(4):e155-61.
  • 56. Aboul-Ela EI. Cytogenetic studies on Nigella sativa seeds extract and thymoquinone on mouse cells infected with schistosomiasis using karyotyping. Mutat Res 2002;516(1- 2):11-7.
  • 57. Amin B, Hosseinzadeh H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med 2016;82(1-2):8-16.
  • 58. Badary OA, Abdel-Naim AB, Abdel-Wahab MH, Hamada FM. The influence of thymoquinone on doxorubicin-induced hyperlipidemic nephropathy in rats. Toxicology 2000;143(3):219-26.
  • 59. Usta A, Dede S. The effect of thymoquinone on nuclear factor kappa B levels and oxidative DNA damage on experimental diabetic rats. Pharmacogn Mag 2017;13(Suppl 3):S458-61.
  • 60. El Gazzar M, El Mezayen R, Marecki JC, Nicolls MR, Canastar A, Dreskin SC. Anti-inflammatory effect of thymoquinone in a mouse model of allergic lung inflammation. Int Immunopharmacol 2006;6(7):1135-42.
  • 61. El Gazzar M, El Mezayen R, Nicolls MR, Marecki JC, Dreskin SC. Downregulation of leukotriene biosynthesis by thymoquinone attenuates airway inflammation in a mouse model of allergic asthma. Biochim Biophys Acta 2006;1760(7):1088-95.
  • 62. Hayat K, Asim MB, Nawaz M, Li M, Zhang L, Sun N. Ameliorative effect of thymoquinone on ovalbumin-induced allergic conjunctivitis in Balb/c mice. Curr Eye Res 2011;36(7):591-8.
  • 63. Sayed-Ahmed MM, Aleisa AM, Al-Rejaie SS, Al-Yahya AA, Al-Shabanah OA, Hafez MM, et al. Thymoquinone attenuates diethylnitrosamine induction of hepatic carcinogenesis through antioxidant signaling. Oxid Med Cell Longev 2010;3(4):254-61.
  • 64. Racoma IO, Meisen WH, Wang QE, Kaur B, Wani AA. Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One 2013;8(9):e72882.
  • 65. Kou B, Liu W, Zhao W, Duan P, Yang Y, Yi Q, et al. Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-β/Smad2/3 signaling pathway. Oncol Rep 2017;38(6):3592- 8.
  • 66. Woo CC, Kumar AP, Sethi G, Tan KH. Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol 2012;83(4):443-51.
  • 67. Bai T, Lian LH, Wu YL, Wan Y, Nan JX. Thymoquinone attenuates liver fibrosis via PI3K and TLR4 signaling pathways in activated hepatic stellate cells. Int Immunopharmacol 2013;15(2):275-81.
  • 68. Bai T, Yang Y, Wu YL, Jiang S, Lee JJ, Lian LH, et al. Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1-AMPK signaling pathway in mice. Int Immunopharmacol 2014;19(2):351-7.
  • 69. Mahgoub AA. Thymoquinone protects against experimental colitis in rats. Toxicol Lett 2003;143(2):133-43.
  • 70. Fouad AA, Jresat I. Thymoquinone therapy abrogates toxic effect of cadmium on rat testes. Andrologia 2015;47(4):417-26.
  • 71. Al-Naqeep G, Ismail M, Allaudin Z. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase gene expression by thymoquinone-rich fraction and thymoquinone in HepG2 cells. J Nutrigenet Nutrigenomics 2009;2(4-5):163-72.
  • 72. Nader MA, el-Agamy DS, Suddek GM. Protective effects of propolis and thymoquinone on development of atherosclerosis in cholesterol-fed rabbits. Arch Pharm Res 2010;33(4): 637-43.
  • 73. Fararh KM, Shimizu Y, Shiina T, Nikami H, Ghanem MM, Takewaki T. Thymoquinone reduces hepatic glucose production in diabetic hamsters. Res Vet Sci 2005;79(3):219-23.
  • 74. Pari L, Sankaranarayanan C. Beneficial effects of thymoquinone on hepatic key enzymes in streptozotocin-nicotinamide induced diabetic rats. Life Sci 2009;85(23-26):830-4.
  • 75. Abdelmeguid NE, Fakhoury R, Kamal SM, Al Wafai RJ. Effects of Nigella sativa and thymoquinone on biochemical and subcellular changes in pancreatic β-cells of streptozotocin-induced diabetic rats. J Diabetes 2010;2(4):256-66.
  • 76. Karandrea S, Yin H, Liang X, Slitt AL, Heart EA. Thymoquinone ameliorates diabetic phenotype in diet-induced obesity mice via activation of SIRT-1-dependent pathways. PLoS One 2017;12(9):e0185374.
  • 77. Ebru U, Burak U, Yusuf S, Reyhan B, Arif K, Faruk TH, et al. Cardioprotective effects of Nigella sativa oil on cyclosporine A-induced cardiotoxicity in rats. Basic Clin Pharmacol Toxicol 2008;103(6):574-80.
  • 78. Nagi MN, Almakki HA. Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity. Phytother Res 2009;23(9):1295-8.
  • 79. Nagi MN, Almakki HA, Sayed-Ahmed MM, AlBekairi AM. Thymoquinone supplementation reverses acetaminophen-induced oxidative stress, nitric oxide production and energy decline in mice liver. Food Chem Toxicol 2010;48(8-9):2361-5.
  • 80. Bouhlel A, Ben Mosbah I, Hadj Abdallah N, Ribault C, Viel R, Mannaï S, et al. Thymoquinone prevents endoplasmic reticulum stress and mitochondria-induced apoptosis in a rat model of partial hepatic warm ischemia reperfusion. Biomed Pharmacother 2017;94: 964-73.
  • 81. Asgharzadeh F, Bargi R, Beheshti F, Hosseini M, Farzadnia M, Khazaei M. Thymoquinone restores liver fibrosis and improves oxidative stress status in a lipopolysaccharide-induced inflammation model in rats. Avicenna J Phytomed 2017;7(6):502-10.
  • 82. Sayed-Ahmed MM, Nagi MN. Thymoquinone supplementation prevents the development of gentamicin-induced acute renal toxicity in rats. Clin Exp Pharmacol Physiol 2007;34(5-6):399- 405.
  • 83. Basarslan F, Yilmaz N, Ates S, Ozgur T, Tutanc M, Motor VK, et al. Protective effects of thymoquinone on vancomycin-induced nephrotoxicity in rats. Hum Exp Toxicol 2012; 31(7):726-33.
  • 84. Elsherbiny NM, El-Sherbiny M. Thymoquinone attenuates doxorubicin-induced nephrotoxicity in rats: role of Nrf2 and NOX4. Chem Biol Interact 2014;223C:102-8.
  • 85. Bargi R, Asgharzadeh F, Beheshti F, Hosseini M, Farzadnia M, Khazaei M. Thymoquinone protects the rat kidneys against renal fibrosis. Res Pharm Sci 2017;12(6):479-87.
  • 86. Evirgen O, Gökçe A, Ozturk OH, Nacar E, Onlen Y, Ozer B, et al. Effect of thymoquinone on oxidative stress in Escherichia coli-induced pyelonephritis in rats. Curr Ther Res Clin Exp 2011;72(5):204-15.
  • 87. Ince S, Kucukkurt I, Demirel HH, Turkmen R, Sever E. Thymoquinone attenuates cypermethrin induced oxidative stress in Swiss albino mice. Pestic Biochem Physiol 2012;104(3): 229-35.
  • 88. Alhebshi AH, Odawara A, Gotoh M, Suzuki I. Thymoquinone protects cultured hippocampal and human induced pluripotent stem cells-derived neurons against α-synuclein-induced synapse damage. Neurosci Lett 2014;570: 126-31.
  • 89. Radad K, Moldzio R, Taha M, Rausch WD. Thymoquinone protects dopaminergic neurons against MPP+ and rotenone. Phytother Res 2009;23(5):696-700.
  • 90. Radad K, Hassanein K, Al-Shraim M, Moldzio R, Rausch WD. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats. Exp Toxicol Pathol 2014;66(1):13-7.
  • 91. Alhebshi AH, Gotoh M, Suzuki I. Thymoquinone protects cultured rat primary neurons against amyloid β-induced neurotoxicity. Biochem Biophys Res Commun 2013;433(4): 362-7.
  • 92. Abulfadl YS, El-Maraghy NN, Ahmed AE, Nofal S, Abdel-Mottaleb Y, Badary OA. Thymoquinone alleviates the experimentally induced Alzheimer’s disease inflammation by modulation of TLRs signaling. Hum Exp Toxicol 2018:960327118755256.
  • 93. Hosseinzadeh H, Parvardeh S. Anticonvulsant effects of thymoquinone, the major constituent of Nigella sativa seeds, in mice. Phytomedicine 2004;11(1):56-64.
  • 94. Gilhotra N, Dhingra D. Thymoquinone produced antianxiety-like effects in mice through modulation of GABA and NO levels. Pharmacol Rep 2011;63(3):660-9.
  • 95. Mabrouk A, Ben Cheikh H. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats. Toxicol Ind Health 2016;32(6):1114-21.
  • 96. Isik AF, Kati I, Bayram I, Ozbek H. A new agent for treatment of acute respiratory distress syndrome: thymoquinone. An experimental study in a rat model. Eur J Cardiothorac Surg 2005;28(2):301-5.
  • 97. Kanter M. Thymoquinone attenuates lung injury induced by chronic toluene exposure in rats. Toxicol Ind Health 2011;27(5):387-95.
  • 98. Suddek GM, Ashry NA, Gameil NM. Thymoquinone attenuates cyclophosphamideinduced pulmonary injury in rats. Inflammopharmacology 2013;21(6):427-35.
  • 99. El-Khouly D, El-Bakly WM, Awad AS, ElMesallamy HO, El-Demerdash E. Thymoquinone blocks lung injury and fibrosis by attenuating bleomycin-induced oxidative stress and activation of nuclear factor KappaB in rats. Toxicology 2012;302(2-3):106- 13.
  • 100. Ozdemir H, Kara MI, Erciyas K, Ozer H, Ay S. Preventive effects of thymoquinone in a rat periodontitis model: a morphometric and histopathological study. J Periodontal Res 2012;47(1):74-80.
  • 101. Wirries A, Schubert AK, Zimmermann R, Jabari S, Ruchholtz S, El-Najjar N. Thymoquinone accelerates osteoblast differentiation and activates bone morphogenetic protein-2 and ERK pathway. Int Immunopharmacol 2013;15(2):381-6.
  • 102. Vaillancourt F, Silva P, Shi Q, Fahmi H, Fernandes JC, Benderdour M. Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J Cell Biochem 2011;112(1):107-17.
  • 103. Khader M, Bresgen N, Eckl PM. In vitro toxicological properties of thymoquinone. Food Chem Toxicol 2009;47(1):129-33.
  • 104. Ali BH, Blunden G. Pharmacological and toxicological properties of Nigella sativa. Phytother Res 2003;17(4):299-305.
  • 105. AbukhaderMM. The effect of route of administration in thymoquinone toxicity in male and female rats. Indian J PharmSci 2012;74(3):195-200.
  • 106. el Daly ES. Protective effect of cysteine and vitamin E, Crocus sativus and Nigella sativa extracts on cisplatin-induced toxicity in rats. Biochemstry 1996;9(4):105-18.
  • 107. Zaoui A, Cherrah Y, Mahassini N, Alaoui K, Amarouch H, Hassar M. Acute and chronic toxicity of Nigella sativa fixed oil. Phytomedicine 2002;9(1):69-74.
  • 108. Gali-Muhtasib H, Ocker M, Kuester D, Krueger S, El-Hajj Z, Diestel A, et al. Thymoquinone reduces mouse colon tumor cell invasion and inhibits tumor growth in murine colon cancer models. J Cell Mol Med 2008;12(1):330-42.
  • 110. Mansour MA, Ginawi OT, El-Hadiyah T, ElKhatib AS, Al-Shabanah OA, Al-Sawaf HA. Effects of volatile oil constituents of Nigella sativa on carbon tetrachloride-induced hepatotoxicity in mice: evidence for antioxidant effects of thymoquinone. Res Commun Mol Pathol Pharmacol 2001;110(3-4):239-51.
  • 111. Salim EI, Fukushima S. Chemopreventive potential of volatile oil from black cumin (Nigella sativa L.) seeds against rat colon carcinogenesis. Nutr Cancer 2003;45(2): 195-202.
  • 112. Al-Ali A, Alkhawajah AA, Randhawa MA, Shaikh NA. Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats. J Ayub Med Coll Abbottabad 2008;20(2):25-7.
  • 113. Tubesha Z, Imam MU, Mahmud R, Ismail M. Study on potential toxicity of a thymoquinonerich fraction nanoemulsion in Sprague Dawley Rats. Molecules 2013;18(7):7460-72.
  • 114. Islam SN, Begum P, Ahsan T, Huque S, Ahsan M. Immunosuppressive and cytotoxic properties of Nigella sativa. Phytother Res 2004;18(5):395-8.
  • 115. Steinmann A, Schätzle M, Agathos M, Breit R. Allergic contact dermatitis from black cumin (Nigella sativa) oil after topical use. Contact Dermatitis 1997;36(5):268-9.
  • 116. Zedlitz S, Kaufmann R, Boehncke WH. Allergic contact dermatitis from black cumin (Nigella sativa) oil-containing ointment. Contact Dermatitis 2002;46(3):188.
  • 117. AbuKhader MM, Khater SH, Al-Matubsi HY. Acute effects of thymoquinone on the pregnant rat and embryo-fetal development. Drug Chem Toxicol 2013;36(1):27-34.
  • 118. Yi T, Cho SG, Yi Z, Pang X, Rodriguez M, Wang Y, et al. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther 2008;7(7):1789-96.
APA GÜZELSOY KARA P, Aydin Dilsiz S, BAŞARAN N (2018). Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. , 118 - 135. 10.5336/pharmsci.2018-59816
Chicago GÜZELSOY KARA PELİN,Aydin Dilsiz Sevtap,BAŞARAN NURŞEN Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. (2018): 118 - 135. 10.5336/pharmsci.2018-59816
MLA GÜZELSOY KARA PELİN,Aydin Dilsiz Sevtap,BAŞARAN NURŞEN Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. , 2018, ss.118 - 135. 10.5336/pharmsci.2018-59816
AMA GÜZELSOY KARA P,Aydin Dilsiz S,BAŞARAN N Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. . 2018; 118 - 135. 10.5336/pharmsci.2018-59816
Vancouver GÜZELSOY KARA P,Aydin Dilsiz S,BAŞARAN N Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. . 2018; 118 - 135. 10.5336/pharmsci.2018-59816
IEEE GÜZELSOY KARA P,Aydin Dilsiz S,BAŞARAN N "Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri." , ss.118 - 135, 2018. 10.5336/pharmsci.2018-59816
ISNAD GÜZELSOY KARA, PELİN vd. "Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri". (2018), 118-135. https://doi.org/10.5336/pharmsci.2018-59816
APA GÜZELSOY KARA P, Aydin Dilsiz S, BAŞARAN N (2018). Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. Literatür Eczacılık Bilimleri Dergisi, 7(2), 118 - 135. 10.5336/pharmsci.2018-59816
Chicago GÜZELSOY KARA PELİN,Aydin Dilsiz Sevtap,BAŞARAN NURŞEN Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. Literatür Eczacılık Bilimleri Dergisi 7, no.2 (2018): 118 - 135. 10.5336/pharmsci.2018-59816
MLA GÜZELSOY KARA PELİN,Aydin Dilsiz Sevtap,BAŞARAN NURŞEN Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. Literatür Eczacılık Bilimleri Dergisi, vol.7, no.2, 2018, ss.118 - 135. 10.5336/pharmsci.2018-59816
AMA GÜZELSOY KARA P,Aydin Dilsiz S,BAŞARAN N Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. Literatür Eczacılık Bilimleri Dergisi. 2018; 7(2): 118 - 135. 10.5336/pharmsci.2018-59816
Vancouver GÜZELSOY KARA P,Aydin Dilsiz S,BAŞARAN N Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri. Literatür Eczacılık Bilimleri Dergisi. 2018; 7(2): 118 - 135. 10.5336/pharmsci.2018-59816
IEEE GÜZELSOY KARA P,Aydin Dilsiz S,BAŞARAN N "Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri." Literatür Eczacılık Bilimleri Dergisi, 7, ss.118 - 135, 2018. 10.5336/pharmsci.2018-59816
ISNAD GÜZELSOY KARA, PELİN vd. "Çörek Otunun (Nigella Sativa L.) Aktif Bileşeni Timokinonun İnsan Sağlığı Üzerine Olası Etkileri". Literatür Eczacılık Bilimleri Dergisi 7/2 (2018), 118-135. https://doi.org/10.5336/pharmsci.2018-59816