Yıl: 2018 Cilt: 7 Sayı: 3 Sayfa Aralığı: 251 - 260 Metin Dili: Türkçe DOI: 10.5336/pharmsci.2018-60599 İndeks Tarihi: 09-09-2020

Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri

Öz:
Ekstraselüler matriks (ECM) temel olarak hücrelere fiziksel destek sağlayan ve dokuların sınırlarını belirleyen yapı şeklinde tanımlanabilmektedir. Hücrelere destek ortamını sağlayan bu yapıyadaha detaylı olarak bakıldığında ise hücrenin farklılaşması, morfolojisi, proliferasyonu, göçü gibifonksiyonların gerçekleşmesi için gerekli bir ortamın varlığı görülmektedir. Ayrıca, bu ortam içerdiğibüyüme faktörleri ile bir depo görevi görmektedir. Hücreler arası matrikste bulunan ana biyomolekülleri proteoglikanlar, glikozaminoglikanlar ve kollajenler şeklinde ifade edebilmektedir. Bu yapılardan bazıları hücreler arası matrikste bulunmalarının yanı sıra hücre yüzey reseptörü olarak görevalmaktadırlar. Bu durum hücre-matriks etkileşimi olarak düşünüldüğünde sinyal iletiminde oldukçaönemli bir yere sahiptir. Bu sayede hücre içi ve hücre dışı ortam arasında ilişki kurulmuş olmaktadır.Hücrelerin uygun şekilde yerleşim göstermeleri ve doku gelişim sürecine paralel olarak bu yerleşimidevam ettirmeleri iyi organize olmuş ECM yapısı ile yakından ilişkilidir. Bu ilişkinin önemini özellikle klinik sonuçları olan kas-iskelet sistemi hastalıklarında ve doku mühendisliği uygulamalarınıntemeli olan iskele yapılarının sentez sürecinde görülmektedir. Özellikle doğal kaynaklı biyomalzemelerin kullanıldığı alanlarda ECM organizasyonu önem kazanmaktadır. Ayrıca, üç boyutlu hücrekültürü çalışmalarında da ECM organizasyonunun ön planda olduğu görülmektedir. ECM yapısınınçalışmalarda görülen bu çok yönlü özellikleri fizyolojik koşullarda ECM’nin organizasyonu ile ilgilidir. ECM’nin hem hastalıklarda hem de normal fizyolojik koşullarda organizasyonunun anlaşılması oldukça önemlidir. Hazırlanan bu çalışmada, ECM yapısının moleküler özellikleri ve ECM ile ilgilihastalıklar ortaya konmakla birlikte, son yıllarda özellikle yenileyici tıp yaklaşımı başlığı altında yapılan ve hücre-ECM etkileşiminin ön planda tutulduğu yaklaşımların açıklanması amaçlanmıştır.
Anahtar Kelime:

Structural and Functional Properties of the Extracellular Matrix

Öz:
The extracellular matrix (ECM) is basically defined as the structure that provides physical support to the cells and determines the boundaries of the tissues. This structure, which provides the supportive environment for the cells, can be seen in more detail, and we can see the existence of an environment for the differentiation of cells, morphology, proliferation and migration. This environment also serves as a repository with the growth factors which it contains. The main biomolecules found in the intercellular matrix can be defined as proteoglycans, glycosaminoglycans and collagen. Some of these structures serve as cell surface receptors as well as the presence of intercellular matrix. This situation is very important for signal transmission when it is considered as cell-matrix interaction. In this regard, a relationship is established between intracellular and extracellular environment. The proper placement of cells and their resumption in parallel with the tissue development process are closely related to well-organized ECM structure. We see the importance of this relationship especially in the musculoskeletal system diseases, which have clinical consequences, and in the synthesis process of scaffold structures based on tissue engineering applications. Especially in the areas where natural biomaterials are used, the ECM organization gains importance. It is also apparent that the ECM organization is forefront in three-dimensional cell culture studies. These versatile features of the ECM structure seen in the work are related to the organization of the ECM in physiological conditions. Understanding of the organization of ECM in both diseases and normal physiological conditions is very important. In this review, the biochemical and physical basis properties of the ECM structure and related ECM diseases will be revealed. Also, in recent years, approaches to cell-ECM interaction, which have been carried out under the heading of particularly regenerative medicine will be explained.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Piez KA. History of extracellular matrix: a personal view. Matrix Biol 1997;16(3):85-92.
  • 2. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016;(97):4- 27.
  • 3. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010;123(Pt 24):4195- 200.
  • 4. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol 2016;(49):10-24.
  • 5. Tanzer ML. Current concepts of extracellular matrix. J Orthop Sci 2006;11(3):326-31.
  • 6. Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 2011;3(2):a004911.
  • 7. Yue B. Biology of the extracellular matrix: an overview. J Glaucoma 2015;23(8 Suppl 1): S20-3.
  • 8. Çakır O, Kazancıoğlu HO, Ak G. [Hyaluronic Acid in Dentistry]. İstanbul Üniversitesi Diş Hekimliği Fakültesi Dergisi 2011;45(1):37-41.
  • 9. LelièvreSA.Contributions of extracellularmatrix signaling and tissue architecture to nuclearmechanisms and spatial organization of gene expression control. BiochimBiophys Acta 2009;1790(9):925-35.
  • 10. Vigetti D, Viola M, Karousou E, Deleonibus S, Karamanou K, De Luca G, et al. Epigenetics in extracellular matrix remodeling and hyaluronan metabolism. FEBS J 2014;281(22):4980- 92.
  • 11. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials 2007;28 (25):3587-93.
  • 12. Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32 (12):3233-43.
  • 13. Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110):920-6.
  • 14. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016;34(4):422- 34.
  • 15. Schneeberger K, Spee B, Costa P, Sachs N, Clevers H, Malda J. Converging biofabrication and organoid technologies: the next frontier in hepatic and intestinal tissue engineering? Biofabrication 2017;9(1):013001.
  • 16. Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, et al. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 2017;35(5):530- 44.
  • 17. Swinehart IT, Badylak SF. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn 2016;245(3): 351-60.
  • 18. Yi S, Ding F, Gong L, Gu X. Extracellular matrix scaffolds for tissue engineering and regenerative medicine. Curr Stem Cell Res Ther 2017;12(3):233-46.
  • 19. Rubert Pérez CM, Stephanopoulos N, Sur S, Lee SS, Newcomb C, Stupp SI. The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann Biomed Eng 2015;43(3):501-14.
  • 20. Koutsopoulos S. Self-assembling peptide nanofiber hydrogels in tissue engineering and regenerative medicine: progress, design guidelines, and applications. J Biomed Mater Res A 2016;104(4):1002-16.
  • 21. Ladoux B, Mège RM. Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol 2017;18(12):743-57.
  • 22. Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, et al. Functional and biomimetic materials for engineering of the threedimensional cell microenvironment. Chem Rev 2017; 117(20):12764-850.
  • 23. Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 2017;18(12):728-42.
  • 24. Naroeni A, Shalihah Q, Meilany S. In vitro enhancement of extracellular matrix formation as natural bioscaffold for stem cell culture. AIP Conference Proceedings 2017;1817(1).
  • 25. Elmashhady HH, Kraemer BA, Patel PH, Sell SA, Garg K. Decellularized extracellular matrices for tissue engineering applications. Electrospinning 2017;(1):87-99.
  • 26. Hynes RO. The extracellular matrix: not just pretty fibrils. Science 2009;326(5957):1216-9.
  • 27. Zhen G, Cao X. Targeting TGFβ signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci 2014;35(5):227-36.
  • 28. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010;341(1):126-40.
  • 29. Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011;3(12):005058.
  • 30. Murphy G. The ADAMs: signalling scissors in the tumour microenvironment. Nat Rev Cancer 2008;8(12):929-41.
  • 31. Bond JS, Rojas K, Overhauser J, Zoghbi HY, Jiang W. The structural genes, MEP1A and MEP1B, for the alpha and beta subunits of the metalloendopeptidase meprin map to human chromosomes 6p and 18q, respectively. Genomics 1995;25(1):300-3.
  • 32. Herzog C, Haun RS, Ludwig A, Shah SV, Kaushal GP. ADAM10 is the major sheddase responsible for the release of membrane-associated meprin A. J Biol Chem 2014;289(19): 13308-22.
  • 33. Broder C, Arnold P, Vadon-Le Goff S, Konerding MA, Bahr K, Müller S, et al. Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength. Proc Natl Acad Sci U S A 2013;110(35):14219-24.
  • 34. Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol 2013;13(9):649-65.
  • 35. Smith HW, Marshall CJ. Regulation of cell signalling by uPAR. Nat Rev Mol Cell Biol 2010;11(1):23-36.
  • 36. Bonnefoy A, Legrand C. Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thromb Res 2000;98(4):323-32.
  • 37. Giuffrida P, Biancheri P, MacDonald TT. Proteases and small intestinal barrier function in health and disease. Curr Opin Gastroenterol 2014;30(2):147-53.
  • 38. Mohamed MM, Sloane BF. Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer 2006;6(10):764- 75.
  • 39. Fonović M, Turk B. Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta 2014;1840(8):2560- 70.
  • 40. Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, et al. HSulf-2, an extracellular endoglucosamine-6- sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 2006;7:2.
  • 41. Simon-Assmann P, Kedinger M, De Arcangelis A, Rousseau V, Simo P. Extracellular matrix components in intestinal development. Experientia 1995;51(9-10):883-900.
  • 42. Simon-Assmann P, Kedinger M, Haffen K. Immunocytochemical localization of extracellular-matrix proteins in relation to rat intestinal morphogenesis. Differentiation 1986;32(1):59-66.
  • 43. Simon-Assmann P, Bouziges F, Freund JN, Perrin-Schmitt F, Kedinger M. Type IV collagen mRNA accumulates in the mesenchymal compartment at early stages of murine developing intestine. J Cell Biol 1990;110(3):849-57.
  • 44. Simon-Assmann P, Lefebvre O, Bellissent-Waydelich A, Olsen J, Orian-Rousseau V, De Arcangelis A. The laminins: role in intestinal morphogenesis and differentiation. Ann N Y Acad Sci 1998;859:46-64.
  • 45. Mahoney ZX, Stappenbeck TS, Miner JH. Laminin alpha 5 influences the architecture of the mouse small intestine mucosa. J Cell Sci 2008;121(Pt 15):2493-502.
  • 46. Beaulieu JF. Integrins and human intestinal cell functions. Front Biosci 1999;4:D310-21.
  • 47. Groulx JF, Gagné D, Benoit YD, Martel D, Basora N, Beaulieu JF. Collagen VI is a basement membrane component that regulates epithelial cell-fibronectin interactions. Matrix Biol 2011;30(3):195-206.
  • 48. Zhang ZL, Zhang H, Ke YH, Yue H, Xiao WJ, Yu JB, et al. The identification of novel mutations in COL1A1, COL1A2, and LEPRE1 genes in Chinese patients with osteogenesis imperfecta. J Bone Miner Metab 2012;30(1): 69-77.
  • 49. Bissell MJ, Hines WC. Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 2011;17(3):320-9.
  • 50. Burnier JV, Wang N, Michel RP, Hassanain M, Li S, Lu Y, et al. Type IV collagen-initiated signals provide survival and growth cues required for liver metastasis. Oncogene 2011;30(35):3766-83.
  • 51. Bergamaschi A, Tagliabue E, Sørlie T, Naume B, Triulzi T, Orlandi R, et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol 2008;214(3):357-67.
  • 52. Poola I, DeWitty RL, Marshalleck JJ, Bhatnagar R, Abraham J, Leffall LD, et al. Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med 2005;11(5):481-3.
  • 53. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438(7069):820-7.
  • 54. Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2011;481(7379):85-9.
  • 55. Ferrara N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell 2010;21(5):687- 90.
  • 56. Hadler-Olsen E, Fadnes B, Sylte I, Uhlin-Hansen L, Winberg JO. Regulation of matrix metalloproteinase activity in health and disease. FEBS J 2011;278(1):28-45.
  • 57. Alaseem A, Alhazzani K, Dondapati P, Alobid T, Bishayee A, Rathinavelu A. Matrix metalloproteinases: a challenging paradigm of cancer management. Semin Cancer Biol 2017;(17):1044-579.
  • 58. Sun C, Wang Z, Zheng Q, Zhang H. Salidroside inhibits migration and invasion of human fibrosarcoma HT1080 cells. Phytomedicine 2012;19(3-4):355-63.
  • 59. Kim A, Yim NH, Im M, Jung YP, Kim T, Ma JY. Suppression of the invasive potential of highly malignant tumor cells by KIOM-C, a novel herbal medicine, via inhibition of NF-κB activation and MMP-9 xpression. Oncol Rep 2014;31(1):287- 97.
  • 60. Hamdoun S, Efferth T. Ginkgolic acids inhibit migration in breast cancer cells by inhibition of NEMO sumoylation and NF-κB activity. Oncotarget 2017;8(21):35103-15.
  • 61. Baek SH, Ko JH, Lee JH, Kim C, Lee H, Nam D, et al. Ginkgolic acid inhibits invasion and migration and TGF-βinduced EMT of lung cancer cells through PI3 K/Akt/mTOR inactivation. J Cell Physiol 2017;232(2):346-54.
  • 62. Sinha S, Khan S, Shukla S, Lakra AD, Kumar S, Das G, et al. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP9 signaling axis. Int J Biochem Cell Biol 2016;77(Pt A):41-56.
  • 63. Pei S, Yang X, Wang H, Zhang H, Zhou B, Zhang D, et al. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2. BMC Cancer 2015;15:965.
  • 64. Liao CL, Lin JH, Lien JC, Hsu SC, Chueh FS, Yu CC, et al. The crude extract of Corni Fructus inhibits the migration and invasion of U-2 OS human osteosarcoma cells through the inhibition of matrix metalloproteinase-2/-9 by MAPK signaling. Environ Toxicol 2015;30(1): 53-63.
  • 65. Cao L, Liu J, Zhang L, Xiao X, Li W. Curcumin inhibits H2O2- induced invasion and migration of human pancreatic cancer via suppression of the ERK/NF-κB pathway. Oncol Rep 2016;36(4):2245-51.
  • 66. Chen S, Liu W, Wang K, Fan Y, Chen J, Ma J, et al. Tetrandrine inhibits migration and invasion of human renal cell carcinoma by regulating Akt/NF-κB/MMP-9 signaling. PLoS One 2017;12(3):e0173725.
  • 67. Chen Z, He T, Zhao K, Xing C. Anti-metastatic activity of fangchinoline in human gastric cancer AGS cells. Oncol Lett 2017;13(2):655-60.
  • 68. Deng W, Sui H, Wang Q, He N, Duan C, Han L, et al. A Chinese herbal formula, Yi-Qi-Fu-Sheng, inhibits migration/invasion of colorectal cancer by down-regulating MMP-2/9 via inhibiting the activation of ERK/MAPK signaling pathways. BMC Complement Altern Med 2013;13:65.
APA CENAN R, Ergin Efe E, Ekici Y, ATAC F (2018). Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. , 251 - 260. 10.5336/pharmsci.2018-60599
Chicago CENAN RASİME SEVGİ,Ergin Efe Ekin,Ekici Yahya,ATAC F.BELGIN Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. (2018): 251 - 260. 10.5336/pharmsci.2018-60599
MLA CENAN RASİME SEVGİ,Ergin Efe Ekin,Ekici Yahya,ATAC F.BELGIN Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. , 2018, ss.251 - 260. 10.5336/pharmsci.2018-60599
AMA CENAN R,Ergin Efe E,Ekici Y,ATAC F Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. . 2018; 251 - 260. 10.5336/pharmsci.2018-60599
Vancouver CENAN R,Ergin Efe E,Ekici Y,ATAC F Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. . 2018; 251 - 260. 10.5336/pharmsci.2018-60599
IEEE CENAN R,Ergin Efe E,Ekici Y,ATAC F "Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri." , ss.251 - 260, 2018. 10.5336/pharmsci.2018-60599
ISNAD CENAN, RASİME SEVGİ vd. "Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri". (2018), 251-260. https://doi.org/10.5336/pharmsci.2018-60599
APA CENAN R, Ergin Efe E, Ekici Y, ATAC F (2018). Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. Literatür Eczacılık Bilimleri Dergisi, 7(3), 251 - 260. 10.5336/pharmsci.2018-60599
Chicago CENAN RASİME SEVGİ,Ergin Efe Ekin,Ekici Yahya,ATAC F.BELGIN Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. Literatür Eczacılık Bilimleri Dergisi 7, no.3 (2018): 251 - 260. 10.5336/pharmsci.2018-60599
MLA CENAN RASİME SEVGİ,Ergin Efe Ekin,Ekici Yahya,ATAC F.BELGIN Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. Literatür Eczacılık Bilimleri Dergisi, vol.7, no.3, 2018, ss.251 - 260. 10.5336/pharmsci.2018-60599
AMA CENAN R,Ergin Efe E,Ekici Y,ATAC F Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. Literatür Eczacılık Bilimleri Dergisi. 2018; 7(3): 251 - 260. 10.5336/pharmsci.2018-60599
Vancouver CENAN R,Ergin Efe E,Ekici Y,ATAC F Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri. Literatür Eczacılık Bilimleri Dergisi. 2018; 7(3): 251 - 260. 10.5336/pharmsci.2018-60599
IEEE CENAN R,Ergin Efe E,Ekici Y,ATAC F "Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri." Literatür Eczacılık Bilimleri Dergisi, 7, ss.251 - 260, 2018. 10.5336/pharmsci.2018-60599
ISNAD CENAN, RASİME SEVGİ vd. "Ekstraselüler Matriksin Yapısal ve Fonksiyonel Özellikleri". Literatür Eczacılık Bilimleri Dergisi 7/3 (2018), 251-260. https://doi.org/10.5336/pharmsci.2018-60599