Yıl: 2020 Cilt: 9 Sayı: 1 Sayfa Aralığı: 77 - 89 Metin Dili: Türkçe DOI: 10.5336/pharmsci.2019-71168 İndeks Tarihi: 09-09-2020

Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler

Öz:
Biyofilmler, bir yüzeye yapışarak kendi ürettikleri jelsi bir tabaka içinde yaşayan mikroorganizmaların oluşturduğu topluluk olaraktanımlanmaktadır. Biyofilm varlığı geleneksel antimikrobiyallerin kullanımı için büyük zorluklar doğurmaktadır. Biyofilmle ilgili klinik enfeksiyonlara kronik otitis media, tekrarlayan tonsilit, kronik yaralar,kistik fibrozis akciğer enfeksiyonları, üriner sistem enfeksiyonları, kronik rinosinüzitler, diş çürükleri ve alet kaynaklı enfeksiyonlar örnek verilebilir. Bakteri türleri tüm mikroorganizmalar arasında diğerlerindendaha fazla biyofilm üretme kapasitesine sahiptir. Çoğu tür, hücre dışıyapılarıyla mikropları yaşam ortamlarında korumaktadır ve olumsuz koşullarda bile mükemmel kolonizasyon yeteneğine sahiptir. Geniş spektrumlu antibiyotiklerin kullanımı, nötropeni, parenteral nütrisyon, kalıcıkateterler, immünsupresyon, cerrahi, kemoterapi ve radyoterapi mantarenfeksiyonları için en önemli faktörler arasındadır. Biyofilmlerin ortadan kaldırılmasındaki ana problem, şu anda klinikte kullanılan ilaçlarakarşı oluşan dirençtir. Antibiyotiğin biyofilm içine yavaş ve düşük penetrasyonu, biyofilm içinde değişen kimyasal mikroçevre ve efluks pompalarının ekspresyonu direnç nedenleri arasındadır. Bu sebepleantibiyofilm aktivitesi olan yeni bileşiklerin ve ilaçların araştırılması zorunlu hâle gelmiştir. Lipozomlar, birçok alanda kullanılan önemli ilaçtaşıyıcı sistemlerden biridir. Lipozomlar enkapsüllenmiş ilacın biyoyararlılığını, biyouyumluluğunu ve güvenlik profilini artırmaktadır. Bubağlamda, lipozomlar biyofilmlerin neden olduğu çok sayıda mikrobiyal enfeksiyonu tedavi etmede ve ilaçların hedefe ulaştırılmasında güvenli platformlar sağlamaktadır. Bu derlemede, mikrobiyal biyofilmlerinenfeksiyon hastalıklarına olan etkisi ve lipozom bazlı ilaç taşıyıcı sistemlerle biyofilmlerin kontrolü ve tedavisi özetlenmiştir.
Anahtar Kelime:

Liposome Based Drug Delivery Systems for Control of Microbial Biofilms

Öz:
Biofilms are defined as a group of microorganisms that live in a gelled layer that they produce by adhering to a surface. The presence of biofilm poses great challenges for the use of conventional antimicrobials. Biofilm-related clinical infections include chronic otitis media, recurrent tonsillitis, chronic wounds, cystic fibrosis lung infections, urinary tract infections, chronic rhinosinusitis, dental caries and instrument-borne infections. Bacterial species are capable of producing more biofilm among all microorganisms than others. Most species, with their extracellular structures, protect microbes in their habitats and have excellent colonization ability even in adverse conditions. Use of broad spectrum antibiotics, neutropenia, parenteral nutrition, permanent catheters, immunosuppression, surgery, chemotherapy and radiotherapy are among the most important factors for fungal infections. The main problem in eliminating biofilms is the resistance to drugs currently used in the clinic. The slow and low penetration of the antibiotic into the biofilm, the chemical microenvironment changing in the biofilm and the expression of efflux pumps are among the causes of resistance. Therefore, it has become necessary to search for novel compounds and drugs with anti-biofilm activity. Liposomes are one of the important drug delivery systems used in many areas. Liposomes increase the bioavailability, biocompatibility and safety profile of the encapsulated drug. In this regard, liposomes are safe in treating a large number of microbial infections caused by biofilms and delivering drugs to the target. In this review, the effect of microbial biofilms on infectious diseases and the control and treatment of biofilms with liposome based drug delivery systems are summarized.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2(2):114-22. [Crossref] [PubMed]
  • 2. Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, et al. Towards diagnostic guidelines for biofilm-associated infections. fEMS Immunol Med Microbiol. 2012;65(2):127-45. [Crossref] [PubMed]
  • 3. D’Acunto B, frunzo L, Klapper I, Mattei M. Modeling multispecies biofilms including new bacterial species invasion. Math Biosci. 2015;259:20-6. [Crossref] [PubMed]
  • 4. Liu Y, Tay JH. Detachment forces and their influence on the structure and metabolic behaviour of biofilms. World J Microbiol Biotechnol. 2001;17(2):111-7. [Crossref]
  • 5. Vinh DC, Embil JM. Device-related infections: a review. J Long Term Effects Med Implants. 2005;15(5):467-88. [Crossref] [PubMed]
  • 6. Götz f. Staphylococcus and biofilms. Mol Microbiol. 2002;43(6):1367-78. [Crossref] [PubMed]
  • 7. Karchmer AW, Longworth DL. Infections of intracardiac devices. Infect Dis Clin North Am. 2002;16(2):477-505. [Crossref] [PubMed]
  • 8. Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev. 2002;15(2):194-222. [Crossref] [PubMed] [PMC]
  • 9. Gjødsbøl K, Christensen JJ, Karlsmark T, Jørgensen B, Klein BM, Krogfelt KA. Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J. 2006;3(3):225-31. [Crossref] [PubMed]
  • 10. foxman B. Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med. 2002;113(Suppl 1A):5S13S. [Crossref] [PubMed]
  • 11. Nicolle LE. Urinary tract infection in long-termcare facility residents. Clin Infect Dis. 2000;31(3):757-61. [Crossref] [PubMed]
  • 12. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418): 1318-22. [Crossref] [PubMed]
  • 13. Tabibian JH, Gornbein J, Heidari A, Dien SL, Lau VH, Chahal P, et al. Uropathogens and host characteristics. J Clin Microbiol. 2008;46(12):3980-6. [Crossref] [PubMed] [PMC]
  • 14. Warren JW. Catheter-associated urinary tract infections. Infect Dis Clin North Am. 1997;11(3):609-22. [Crossref] [PubMed]
  • 15. Warren JW. Catheter-associated urinary tract infections. Int J Antimicrob Agents. 2001; 17(4):299-303. [Crossref] [PubMed]
  • 16. Carron MA, Tran VR, Sugawa C, Coticchia JM. Identification of Helicobacter pylori biofilms in human gastric mucosa. J Gastrointest Surg. 2006;10(5):712-7. [Crossref] [PubMed]
  • 17. Yonezawa H, Osaki T, Kamiya S. Biofilm formation by Helicobacter pylori and its involvement for antibiotic resistance. Biomed Res Int. 2015;2015:914791. [Crossref] [PubMed] [PMC]
  • 18. Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;33(4):499-515. [Crossref] [PubMed] [PMC]
  • 19. Acuin J, World Health Organization. Chronic Suppurative Otitis Media: Burden of Illness and Management Options. Geneva, Switzerland: World Health Organization; 2004. p.71.
  • 20. Verhoeff M, van der Veen EL, Rovers MM, Sanders EA, Schilder AG. Chronic suppurative otitis media: a review. Int J Pediatr Otorhinolaryngol. 2006;70(1):1-12. [Crossref] [PubMed]
  • 21. Hall-Stoodley L, Hu fz, Gieseke A, Nistico L, Nguyen D, Hayes J, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. JAMA. 2006;296(2):202-11. [Crossref] [PubMed] [PMC]
  • 22. Swidsinski A, Mendling W, Loening-Baucke V, Ladhoff A, Swidsinski S, Hale LP, et al. Adherent biofilms in bacterial vaginosis. Obstet Gynecol. 2005;106(5 Pt 1):1013-23. [Crossref] [PubMed]
  • 23. Antas PR, Brito MM, Peixoto É, Ponte CG, Borba CM. Neglected and emerging fungal infections: review of hyalohyphomycosis by Paecilomyces lilacinus focusing in disease burden, in vitro antifungal susceptibility and management. Microbes Infect. 2012;14(1):1- 8. [Crossref] [PubMed]
  • 24. Kumamoto CA, Vinces MD. Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol. 2005;59:113-33. [Crossref] [PubMed]
  • 25. Ramage G, Jose A, Coco B, Rajendran R, Rautemaa R, Murray C, et al. Commercial mouthwashes are more effective than azole antifungals against Candida albicans biofilms in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111(4):456-60. [Crossref] [PubMed]
  • 26. Coco B, Bagg J, Cross L, Jose A, Cross J, Ramage G. Mixed Candida albicans and Candida glabrata populations associated with the pathogenesis of denture stomatitis. Oral Microbiol Immunol. 2008;23(5):377-83. [Crossref] [PubMed]
  • 27. Ariani N, Vissink A, van Oort RP, Kusdhany L, Djais A, Rahardjo TB, et al. Microbial biofilms on facial prostheses. Biofouling. 2012;28(6): 583-91. [Crossref] [PubMed]
  • 28. Martin-Garrido I, Carmona EM, Specks U, Limper AH. Pneumocystis pneumonia in patients treated with rituximab. Chest. 2013;144(1):258-65. [Crossref] [PubMed] [PMC]
  • 29. Lanjewar DN. The spectrum of clinical and pathological manifestations of AIDS in a consecutive series of 236 autopsied cases in Mumbai, India. Patholog Res Int. 2011;2011:547618. [Crossref] [PubMed] [PMC]
  • 30. Perfect JR, Dismukes WE, Dromer f, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(3):291-322. [Crossref] [PubMed] [PMC]
  • 31. Martinez LR, fries BC. fungal biofilms: relevance in the setting of human disease. Curr fungal Infect Rep. 2010;4(4):266-75. [Crossref] [PubMed] [PMC]
  • 32. Damman CJ, Miller SI, Surawicz CM, zisman TL. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am J Gastroenterol. 2012;107(10):1452-9. [Crossref] [PubMed]
  • 33. Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol. 2011;14(4):386-91. [Crossref] [PubMed] [PMC]
  • 34. Wolcott R, Rumbaugh K, James G, Schultz G, Phillips P, Yang Q, et al. Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J Wound Care. 2010;19(8):320-8. [Crossref] [PubMed]
  • 35. de la fuente-Núñez C, Reffuveille f, fernández L, Hancock RE. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol. 2013;16(5):580-9. [Crossref] [PubMed]
  • 36. Stewart PS. Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother.1996;40(11):2517-22. [Crossref] [PubMed] [PMC]
  • 37. Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T. Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy. 1997;43(5):340-5. [Crossref] [PubMed]
  • 38. Nichols WW, Dorrington S, Slack M, Walmsley H. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother. 1988;32(4):518-23. [Crossref] [PubMed] [PMC]
  • 39. Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510-43. [Crossref] [PubMed] [PMC]
  • 40. zhang TC, Bishop PL. Evaluation of substrate and pH effects in a nitrifying biofilm. Water Environ Res. 1996;68(7):1107-15. [Crossref]
  • 41. Tack KJ, Sabath LD. Increased minimum inhibitory concentrations with anaerobiasis for tobramycin, gentamicin, and amikacin, compared to latamoxef, piperacillin, chloramphenicol, and clindamycin. Chemotherapy. 1985;31(3):204-10. [Crossref] [PubMed]
  • 42. Tuomanen E, Cozens R, Tosch W, zak O, Tomasz A. The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol. 1986;132(5):1297-304. [Crossref] [PubMed]
  • 43. Mah Tf. Biofilm-specific antibiotic resistance. future Microbiol. 2012;7(9):1061-72. [Crossref] [PubMed]
  • 44. Podnecky NL, Rhodes KA, Schweizer HP. Efflux pump-mediated drug resistance in Burkholderia. front Microbiol. 2015;6:305. [Crossref] [PubMed] [PMC]
  • 45. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582- 610. [Crossref] [PubMed] [PMC]
  • 46. Livermore DM. Interplay of impermeability and chromosomal beta-lactamase activity in imipenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1992;36(9):2046-8. [Crossref] [PubMed] [PMC]
  • 47. Li Xz, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gramnegative bacteria. Clin Microbiol Rev. 2015;28(2):337-418. [Crossref] [PubMed] [PMC]
  • 48. Schlisselberg DB, Kler E, Kisluk G, Shachar D, Yaron S. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants. Int J Antimicrob Agents. 2015;46(4): 456-9. [Crossref] [PubMed]
  • 49. Ramage G, Bachmann S, Patterson Tf, Wickes BL, López-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother. 2002;49(6):973-80. [Crossref] [PubMed]
  • 50. fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv. 2008;5(1):25- 44. [Crossref] [PubMed]
  • 51. Vanic z, Holaeter AM, Skalko-Basnet N. (Phospho)lipid-based nanosystems for skin administration. Curr Pharm Des. 2015;21(29): 4174-92. [Crossref] [PubMed]
  • 52. Rukavina z, Vanić Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8(2). pii: E18. [Crossref] [PubMed] [PMC]
  • 53. Riaz MK, Riaz MA, zhang X, Lin C, Wong KH, Chen X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. Int J Mol Sci. 2018;19(1). pii: E195. [Crossref] [PubMed] [PMC]
  • 54. Torchilin V, Klibanov A, Huang L, O'Donnell S, Nossiff N, Khaw B. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. fASEB J. 1992;6(9):2716-9. [Crossref] [PubMed]
  • 55. Northfelt DW, Martin fJ, Working P, Volberding PA, Russell J, Newman M, et al. Doxorubicin encapsulated in liposomes containing surface‐bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS‐related Kaposi's sarcoma. J Clin Pharmacol. 1996;36(1):55-63. [Crossref] [PubMed]
  • 56. Willis M, forssen E. Ligand-targeted liposomes. Adv Drug Deliv Rev. 1998;29(3):249- 71. [Crossref] [PubMed]
  • 57. Catuogno C, Jones MN. The antibacterial properties of solid supported liposomes on Streptococcus oralis biofilms. Int J Pharm. 2003;257(1-2):125-40. [Crossref] [PubMed]
  • 58. Mugabe C, Azghani AO, Omri A. Liposomemediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J Antimicrob Chemother. 2005;55(2):269-71. [Crossref] [PubMed]
  • 59. Drulis-Kawa z, Gubernator J, DorotkiewiczJach A, Doroszkiewicz W, Kozubek A. In vitro antimicrobial activity of liposomal meropenem against Pseudomonas aeruginosa strains. Int J Pharm. 2006;315(1-2):59-66. [Crossref] [PubMed]
  • 60. Meers P, Neville M, Malinin V, Scotto A, Sardaryan G, Kurumunda R, et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J Antimicrob Chemother. 2008;61(4):859-68. [Crossref] [PubMed]
  • 61. Halwani M, Yebio B, Suntres z, Alipour M, Azghani A, Omri A. Co-encapsulation of gallium with gentamicin in liposomes enhances antimicrobial activity of gentamicin against Pseudomonas aeruginosa. J Antimicrob Chemother. 2008;62(6):1291-7. [Crossref] [PubMed]
  • 62. Alipour M, Suntres zE, Omri A. Importance of DNase and alginate lyase for enhancing free and liposome encapsulated aminoglycoside activity against Pseudomonas aeruginosa. J Antimicrob Chemother. 2009;64(2):317-25. [Crossref] [PubMed]
  • 63. zhou TH, Su M, Shang BC, Ma T, Xu GL, Li HL, et al. Nano-hydroxyapatite/β-tricalcium phosphate ceramics scaffolds loaded with cationic liposomal ceftazidime: preparation, release characteristics in vitro and inhibition to Staphylococcus aureus biofilms. Drug Dev Ind Pharm. 2012;38(11):1298-304. [Crossref] [PubMed]
  • 64. Alhajlan M, Alhariri M, Omri A. Efficacy and safety of liposomal clarithromycin and its effect on Pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother. 2013;57(6):2694-704. [Crossref] [PubMed] [PMC]
  • 65. Kawai A, Yamagishi Y, Mikamo H. In vitro efficacy of liposomal amphotericin B, micafungin and fluconazole against non-albicans Candida species biofilms. J Infect Chemother. 2015;21(9):647-53. [Crossref] [PubMed]
  • 66. Dong D, Thomas N, Thierry B, Vreugde S, Prestidge CA, Wormald PJ. Distribution and inhibition of liposomes on Staphylococcus aureus and Pseudomonas aeruginosa biofilm. PLoS One. 2015;10(6):e0131806. [Crossref] [PubMed] [PMC]
  • 67. Meng Y, Hou X, Lei J, Chen M, Cong S, zhang Y, et al. Multi-functional liposomes enhancing target and antibacterial immunity for antimicrobial and anti-biofilm against methicillin-resistant Staphylococcus aureus. Pharm Res. 2016;33(3):763-75. [Crossref] [PubMed]
  • 68. Sugano M, Morisaki H, Negishi Y, Endo-Takahashi Y, Kuwata H, Miyazaki T, et al. Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms. J Liposome Res. 2016;26(2):156-62. [PubMed]
  • 69. Rivero Berti I, Dell’Arciprete ML, Dittler ML, Miñan A, fernández Lorenzo de Mele M, Gonzalez M. Delivery of fluorophores by calcium phosphate-coated nanoliposomes and interaction with Staphylococcus aureus biofilms. Colloids Surf B Biointerfaces. 2016;142:214- 22. [Crossref] [PubMed]
  • 70. zahra MJ, Hamed H, Mohammad RY, Nosratollah z, Akbarzadeh A, Morteza M. Evaluation and study of antimicrobial activity of nanoliposomal meropenem against Pseudomonas aeruginosa isolates. Artif Cells Nanomed Biotechnol. 2017;45(5):975-80. [Crossref] [PubMed]
  • 71. Dias-Souza MV, Soares DL, Dos Santos VL. Comparative study of free and liposome-entrapped chloramphenicol against biofilms of potentially pathogenic bacteria isolated from cooling towers. Saudi Pharm J. 2017;25(7): 999-1004. [Crossref] [PubMed] [PMC]
  • 72. Alhariri M, Majrashi MA, Bahkali AH, Almajed fS, Azghani AO, Khiyami MA, et al. Efficacy of neutral and negatively charged liposomeloaded gentamicin on planktonic bacteria and biofilm communities. Int J Nanomedicine. 2017;12:6949-61. [Crossref] [PubMed] [PMC]
  • 73. Ye T, Sun S, Sugianto TD, Tang P, Parumasivam T, Chang YK, et al. Novel combination proliposomes containing tobramycin and clarithromycin effective against Pseudomonas aeruginosa biofilms. Int J Pharm. 2018;552(1- 2):130-8. [Crossref] [PubMed]
  • 74. Vanić Ž, Rukavina z, Manner S, fallarero A, Uzelac L, Kralj M, et al. Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections. Int J Nanomedicine. 2019;14:5957-76. [Crossref] [PubMed] [PMC]
  • 75. Li D, Chen S, Dou H, Wu W, Liu Q, zhang L, et al. Preparation of cefquinome sulfate cationic proliposome and evaluation of its efficacy on Staphylococcus aureus biofilm. Colloids Surf B Biointerfaces. 2019;182:110323. [Crossref] [PubMed]
APA Albayrak A, Acarturk F (2020). Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. , 77 - 89. 10.5336/pharmsci.2019-71168
Chicago Albayrak Aslınur,Acarturk Fusun Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. (2020): 77 - 89. 10.5336/pharmsci.2019-71168
MLA Albayrak Aslınur,Acarturk Fusun Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. , 2020, ss.77 - 89. 10.5336/pharmsci.2019-71168
AMA Albayrak A,Acarturk F Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. . 2020; 77 - 89. 10.5336/pharmsci.2019-71168
Vancouver Albayrak A,Acarturk F Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. . 2020; 77 - 89. 10.5336/pharmsci.2019-71168
IEEE Albayrak A,Acarturk F "Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler." , ss.77 - 89, 2020. 10.5336/pharmsci.2019-71168
ISNAD Albayrak, Aslınur - Acarturk, Fusun. "Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler". (2020), 77-89. https://doi.org/10.5336/pharmsci.2019-71168
APA Albayrak A, Acarturk F (2020). Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. Literatür Eczacılık Bilimleri Dergisi, 9(1), 77 - 89. 10.5336/pharmsci.2019-71168
Chicago Albayrak Aslınur,Acarturk Fusun Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. Literatür Eczacılık Bilimleri Dergisi 9, no.1 (2020): 77 - 89. 10.5336/pharmsci.2019-71168
MLA Albayrak Aslınur,Acarturk Fusun Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. Literatür Eczacılık Bilimleri Dergisi, vol.9, no.1, 2020, ss.77 - 89. 10.5336/pharmsci.2019-71168
AMA Albayrak A,Acarturk F Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. Literatür Eczacılık Bilimleri Dergisi. 2020; 9(1): 77 - 89. 10.5336/pharmsci.2019-71168
Vancouver Albayrak A,Acarturk F Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler. Literatür Eczacılık Bilimleri Dergisi. 2020; 9(1): 77 - 89. 10.5336/pharmsci.2019-71168
IEEE Albayrak A,Acarturk F "Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler." Literatür Eczacılık Bilimleri Dergisi, 9, ss.77 - 89, 2020. 10.5336/pharmsci.2019-71168
ISNAD Albayrak, Aslınur - Acarturk, Fusun. "Mikrobiyal Biyofilm Kontrolünde Lipozom Bazlı İlaç Taşıyıcı Sistemler". Literatür Eczacılık Bilimleri Dergisi 9/1 (2020), 77-89. https://doi.org/10.5336/pharmsci.2019-71168