Yıl: 2018 Cilt: 15 Sayı: 2 Sayfa Aralığı: 80 - 92 Metin Dili: Türkçe DOI: 10.5336/forensic.2018-60269

Biyolojik Delillerin Tespitinde Kullanılan Tarama ve Doğrulama Testleri ve Bu Konudaki Son Gelişmeler

Öz:
Olay yerinde bulunan biyolojik örnekler, çoğu zaman olayın tüm aşamalarının aydınlatılmasında ve suçlu veya suçluların identifikasyonunda en güçlü delillerden biridir. Olayın gerçekleştiği yerdeki vücut sıvılarının yerinin saptanması ve sonrasında orijininin belirlenmesi için adlilaboratuvarların rutin analizlerinde temeli mikroskobik, kimyasal, immünolojik ve spektroskopikyöntemlere dayalı olan bazı tarama ve doğrulama testleri uygulanmaktadır. Sonraki aşama ise gerekli görülen biyolojik deliller üzerinde kimliklendirme için DNA analizidir. Tarama ve doğrulamatestlerinin en önemli avantajı delilin yerinin belirlenmesinin yanında, delil niteliği taşımayan örneklerin eliminasyonu sağlanarak gereksiz DNA analizi yapılmasının önüne geçilmesi ve böylecezaman kaybının ve ekonomik kayıpların önlenmesidir. Olay yeri inceleme uzmanlarının, adli biyoloji laboratuvarı çalışanlarının ve çeşitli dava dosyalarında bu tür deliller ile ilgili laboratuvar sonuçlarını yorumlayan adli tıp uzmanlarının biyolojik delillerle ilgili bilgilerinin yeterli düzeydeolması önemlidir. Rutin uygulamalarda her bir vücut sıvısının saptanmasında kullanılan ayrı testler bulunmaktadır. Çünkü, aynı yöntemle az miktardaki biyolojik örnekten tüm vücut sıvılarınınsaptanmasına yönelik yüksek güvenirlilikte bir test henüz rutin uygulamalara girmemiştir. Son yıllarda bu konuda çalışan araştırıcılar tarafından, yeni tekniklerin geliştirilmesine ve mevcut tekniklerin iyileştirilmesine yönelik oldukça umut verici çalışmalar yayımlanmıştır. Bu çalışmada, olayyerindeki biyolojik delillerin yerinin saptanması ve elde edilen biyolojik örneklerin orijininin belirlenmesi aşamalarında kullanılan mevcut tarama ve doğrulama testlerinin tanıtılması ile bu konudaki sorunların çözümüne yönelik yeni geliştirilmiş moleküler genetik (mRNA) ve spektroskopik(floresans, raman) temelli yöntemlerin tartışılması amaçlanmıştır.
Anahtar Kelime:

Presumptive and Confirmatory Tests Used in Identification of Biological Evidence and the Latest Developments in This Topic

Öz:
Biological evidence at the crime scene is one of the most powerful proof for elucidation to all phases of the event and identification of the culprit. In routine forensic laboratory analysis, some presumptive and confirmatory tests based on microscopic, chemical, immunological and spectroscopic methods are used to determine the body fluids at the scene and identification of the origin. The next step is DNA analyzing for personalization of necessary biological evidence. The most important advantage of scanning and verification tests is to determine the location of the evidence and to prevent the unnecessary DNA analysis by eliminating the samples which cannot use as evidence, thus to prevent the time and economic loss. It is important for crime scene investigators, forensic biology laboratory assistants, and forensic medical experts who interpreting the laboratory results about this kind of evidence in various cases to have an adequate knowledge about biological evidence. There are different tests for the detection of each type of body fluids in routine applications. But there is no high reliability test into the routine applications yet, which can determine all the body fluids from the small amounts of biological samples with the same method. In recent years, encouraging researches about the development of new techniques and improvement of existing ones were published by researchers who work in this area. In this study, it is aimed to present the current screening and validation tests used to determine the site of the biological evidence at the scene and to determine the origin of the obtained biological samples. Additionally, it is aimed to discuss of the methods based on newly developed molecular genetics (mRNA) and spectroscopy (fluorescence, raman).
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Weber K. [The use of chemiluminescence of luminol in forensic medicine and toxicology. I. identification of blood stains]. Dtsch Z Gesamte Gerichtl Med 1966;57(3):410-23.
  • 2. Virkler K, Lednev IK. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 2009;188(1-3):1-17.
  • 3. Allery JP, Telmon N, Mieusset R, Blanc A, Rougé D. Cytological detection of spermatozoa: comparison of three staining methods. J Forensic Sci 2001;46(2):349-51.
  • 4. Juusola J, Ballantyne J. mRNA profiling for body fluid identification by multiplex quantitative RT-PCR. J Forensic Sci 2007;52(6):1252- 62.
  • 5. Haas C, Klesser B, Maake C, Bär W, Kratzer A. mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR. Forensic Sci Int Genet 2009;3(2):80-8.
  • 6. Nussbaumer C, Gharehbaghi-Schnell E, Korschineck I. Messenger RNA profiling: a novel method for body fluid identification by real-time PCR. Forensic Sci Int 2006;157(2-3):181-6.
  • 7. Best MA. Statistical presentation of forensic data. In: Rapley R, Whitehouse D, eds. Molecular Forensics. 1st ed. England: John Wiley & Sons Ltd West Sussex; 2007. p.185-95.
  • 8. Barni F, Lewis SW, Berti A, Miskelly GM, Lago G. Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 2007;72(3):896-913.
  • 9. Gaensslen RE. Sourcebook in Forensic Serology Immunology and Biochemistry. In: Barberiio M, eds. A new Micro-chemical Reaction of the Sperma and its Application in Medicolegal Investigations. 1st ed. Washington, DC: U.S. Department of Justice; 1983. p.112-3.
  • 10. Spalding RP. Identification and characterization of blood and bloodstains. In: James SH, Nordby JJ, eds. Forensic Science: an Introduction to Scientific and Investigative Techniques. 1st ed. Boca Raton: CRC Press; 2003. p.181-201.
  • 11. Quinones I, Sheppard D, Harbison S, Elliot D. Comparative analysis of luminol formulations. Can Soc Forensic Sci J 2006;40(2):53-63.
  • 12. łuczak S, Woźniak M, Papuga M, Stopińiska K, Sliwka K. [A comparison of the Bluestar and luminol effectiveness in bloodstain detection]. Arch Med Sadowej Kryminol 2006;56(4):239- 45.
  • 13. Castelló A, Alvarez M, Verdú F. Accuracy, reliability, and safety of luminol in bloodstain investigation. Can Soc Forensic Sci J 2002;35(3):113-21.
  • 14. Li R. Forensic Biology: Identification and DNA Analysis of Biological Evidence. Identification of Blood. 1st ed. Boca Raton: CRC Press; 2008. p.237.
  • 15. Blum LJ, Esperanca P, Rocquefelte S. A new high-performance reagent and procedure for latent bloodstain detection based on luminol chemiluminescence. Can Soc Forensic Sci J 2006;39(3):81-100.
  • 16. Sensabaugh GF. Isozymes in forensic science. In: Rattazzi MC, Scandalios JG, Whitt GS, eds. Isozymes: Current Topics in Biological and Medical Research. 1st ed. New York: Alan R Liss Inc; 1982. p.247-60.
  • 17. Shaler RC. Modern forensic biology. In: Saferstein R, ed. Forensic Science Handbook. 2nd ed. Upper Saddle River, NJ: Prentice Hall; 2002. p.529-46.
  • 18. Tobe SS, Watson N, Daéid NN. Evaluation of six presumptive tests for blood, their specificity, sensitivity, and effect on high molecularweight DNA. J Forensic Sci 2007;52(1):102-9.
  • 19. Johnston E, Ames CE, Dagnall KE, Foster J, Daniel BE. Comparison of presumptive blood test kits including hexagon OBTI. J Forensic Sci 2008;53(3):687-9.
  • 20. Watson N. The analysis of body fluids. Crime Scene to Court: The Essentials of Forensic Science. 2nd ed. Cambridge, UK: Royal Society of Chemist; 2004. p.377-413.
  • 21. Andersen J, Bramble S. The effects of fingermark enhancement light sources on subsequent PCR-STR DNA analysis of fresh bloodstains. J Forensic Sci 1997;42(2):303-6.
  • 22. McNally L, Shaler RC, Baird M, Balazs I, De Forest P, Kobilinsky L. Evaluation of deoxyribonucleic acid (DNA) isolated from human bloodstains exposed to ultraviolet light, heat, humidity, and soil contamination. J Forensic Sci 1989;34(5):1059-69.
  • 23. Noppinger K, Morrison R, Jones NH, Hopkins H 2nd. An evaluation of an enzymatic choline determination for the identification of semen in casework samples. J Forensic Sci 1987;32(4):1069-74.
  • 24. Suzuki O, Matsumoto T, Oya M, Katsumata Y, Asano M. A new enzymatic method for the demonstration of choline in human seminal stains. J Forensic Sci 1981;26(2):410-5.
  • 25. Manabe F, Tsutsumi A, Yamamoto Y, Hashimoto Y, Ishizu H. The identification of human semen by a chemiluminescent assay of choline. Nihon Hoigaku Zasshi 1991;45(3):205-15.
  • 26. Greenfield A, Sloan MA. Identification of biological fluids and stains. In: James SH, Nordby JJ, eds. Forensic Science: an Introduction to Scientific and Investigative Techniques. 1st ed. Boca Raton: CRC Press; 2003. p.203-20.
  • 27. Jones Jr EL. The identification of semen and other body fluids. In: Saferstein R, ed. Forensic Science Handbook. 2nd ed. Upper Saddle River, NJ: Prentice Hall; 2005. p.329-82.
  • 28. Seta S. Application of scanning electron microscopy and energy dispersive X-ray microanalysis to the criminal identification of body fluid stains. Int Crim Police Rev 1997;Issue 307:119-23.
  • 29. Chuen LW, Ee KB. Forensic light sources for detection of biological evidences in crime scene investigation: a review. Malays J Forensic Sci 2010;1(1):17-28.
  • 30. Santucci KA, Nelson DG, McQuillen KK, Duffy SJ, Linakis JG. Wood’s lamp utility in the identification of semen. Pediatrics 1999;104(6):1342-4.
  • 31. Nelson DG, Santucci KA. An alternate light source to detect semen. Acad Emerg Med 2002;9(10):1045-8.
  • 32. Mullen C. Amylase: phadebas test, saliva. In: Jamieson A, Moenssens A, eds. Wiley Encyclopedia of Forensic Science. 1st ed. England: John Wiley & Sons Ltd. 2009.
  • 33. Roda N, Lee SB, Barloewen B, Mehmet T. DNA typing compatibility with a One Step Saliva Screening Test. Themis: Research Journal of Justice Studies and Foren Sci 2014;2(1):223-35.
  • 34. Tröger HD, Schuck M, Tutsch-Bauer E. [Detection of saliva traces using test strips]. Forensic Sci Int 1984;25(2):143-6.
  • 35. Komuro T, Mukoyama R, Mukoyama H. [Application of enzyme-linked immunosorbent assay (ELISA) to the medico-legal identification]. Nihon Rinsho 1995;53(9):2322-9.
  • 36. Vandenberg N, van Oorschot RA. The use of Polilight in the detection of seminal fluid, saliva, and bloodstains and comparison with conventional chemical-based screening tests. J Forensic Sci 2006;51(2):361-70.
  • 37. Dixon TR, Samudra AV, Stewart WD Jr, Johari O. A scanning electron microscope study of dried blood. J Forensic Sci 1976;21(4):797- 803.
  • 38. Kashyap VK. A simple immunosorbent assay for detection of human blood. J Immunoassay 1989;10(4):315-24.
  • 39. Rao DV, Kashyap VK. Dot blot immunoassay for detection of human semen. J Immunoassay 1992;13(4):537-44.
  • 40. Matsuzawa S, Itoh Y, Kimura H, Kobayashi R, Nakagawa T, Ohno S. Rapid detection of human seminal plasma proteins by membrane aspiration test (MAT). Forensic Sci Int 1994;64(2-3):119-24.
  • 41. Maher J, Vintiner S, Elliot D, Melia L. Evaluation of the BioSign PSA membrane test for the identification of semen stains in forensic casework. N Z Med J 2002;115(1147):48-9.
  • 42. Hochmeister MN, Budowle B, Rudin O, Gehrig C, Borer U, Thali M, et al. Evaluation of prostate-specific antigen (PSA) membrane test assays for the forensic identification of seminal fluid. J Forensic Sci 1999;44(5):1057- 60.
  • 43. Zapata F, Ossa AF, Garcia-Ruiz C. Emerging spectrometric techniques for the forensic analysis of body fluids. TeAC Trends in Analytical Chemistry 2015;64(1):53-63.
  • 44. Orphanou CM, Walton-Williams L, Mountain H, Cassella J. The detection and discrimination of human body fluids using ATR FT-IR spectroscopy. Forensic Sci Int 2015;252:e10- 6.
  • 45. Williams E, Lin MH, Harbison S, Fleming R. The development of a method of suspension RNA-FISH for forensically relevant epithelial cells using LNA probes. Forensic Sci Int Genet 2014;(9):85-92.
  • 46. Miranda GE, Prado FB, Delwing F, Daruge E Jr. Analysis of the fluorescence of body fluids on different surfaces and times. Sci Justice 2014;54(6):427-31.
  • 47. Virkler K, Lednev IK. Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci Int 2008;181(1-3):e1-5.
  • 48. Harbison SA, Fleming RI. Forensic body fluid identification: state of the art. Research and Reports in Forensic Medical Science 2016;6:11-23.
  • 49. Zapata F, Gregório I, García-Ruiz C. Body fluids and spectroscopic techniques in forensics: a perfect match? J Forens Med 2015;1(1):1-7.
  • 50. Sikirzhytskaya A, Sikirzhytski V, McLaughlin G, Lednev IK. Forensic identification of blood in the presence of contaminations using Raman microspectroscopy coupled with advanced statistics: effect of sand, dust, and soil. J Forensic Sci 2013;58(5):1141-8.
  • 51. Grasselli JG, Snavely MK, Bulkin BJ. Chemical Applications of Raman Spectroscopy. 1st ed. New York: John Wiley & Sons; 1981. p.198.
  • 52. Park JL, Park SM, Kim JH, Lee HC, Lee SH, Woo KM, et al. Forensic body fluid identification by analysis of multiple RNA markers using NanoString technology. Genomics Inform 2013;11(4):277-81.
  • 53. Bauer M. RNA in forensic science. Forensic Sci Int Genet 2007;1(1):69-74.
  • 54. Alvarez M, Juusola J, Ballantyne J. An mRNA and DNA co-isolation method for forensic casework samples. Anal Biochem 2004;335(2):289-98.
  • 55. Juusola J, Ballantyne J. Messenger RNA profiling: a prototype method to supplant conventional methods for body fluid identification. Forensic Sci Int 2003;135(2):85-96.
  • 56. Ballantyne J, Juusola J. Messenger RNA Profiling: Body Fluid Identification using Muliplex Reverse Transcription-Polymerase Chain Reaction (RT-PCR). USA: Research Foundation of The University of Central Florida Inc; 2007;52(6):1252-62.
  • 57. Juusola J, Ballantyne J. Multiplex mRNA profiling for the identification of body fluids. Forensic Sci Int 2005;152(1):1-12.
  • 58. Zubakov D, Hanekamp E, Kokshoorn M, van Ijcken W, Kayser M. Stable RNA markers for identification of blood and saliva stains revealed from whole genome expression analysis of time-wise degraded samples. Int J Legal Med 2008;122(2):135-42.
  • 59. Haas C, Hanson E, Bär W, Banemann R, Bento AM, Berti A, et al. mRNA profiling for the identification of blood-results of a collaborative EDNAP exercise. Forensic Sci Int Genet 2011;5(1):21-6.
  • 60. Haas C, Hanson E, Anjos MJ, Banemann R, Berti A, Borges E, et al. RNA/DNA co-analysis from human saliva and semen stains--results of a third collaborative EDNAP exercise. Forensic Sci Int Genet 2013;7(2):230-9.
  • 61. Schweers BA, Old J, Boonlayangoor PW, Reich KA. Developmental validation of a novel lateral flow strip test for rapid identification of human blood (Rapid Stain Identification™- Blood). Forensic Sci Int Genet 2008; 2(3):243- 7.
  • 62. Trombka JI, Schweitzer J, Selavka C, Dale M, Gahn N, Floyd S, et al. Crime scene investigations using portable, non-destructive space exploration technology. Forensic Sci Int 2002;129(1):1-9.
  • 63. Lin AC, Hsieh HM, Tsai LC, Linacre A, Lee JC. Forensic applications of infrared imaging for the detection and recording of latent evidence. J Forensic Sci 2007;52(5):1148-50.
  • 64. Jakovich CJ. STR analysis following latent blood detection by luminol, fluorescein, and BlueStar. Journal of Forensic Identification 2015;65(4):693-8.
  • 65. Pang BC, Cheung BK. Identification of human semenogelin in membrane strip test as an alternative method for the detection of semen. Forensic Sci Int 2007;169(1):27-31.
  • 66. Quarino L, Dang Q, Hartmann J, Moynihan N. An ELISA method for the identification of salivary amylase. J Forensic Sci 2005;50(4):873- 6.
  • 67. Old JB, Schweers BA, Boonlayangoor PW, Reich KA. Developmental Validation of RSID™‐Saliva: A Lateral Flow Immunochromatographic Strip Test for the Forensic Detection of Saliva. J Forensic Sci 2009;54(4):866-73.
  • 68. Pang BC, Cheung BK. Applicability of two commercially available kits for forensic identification of saliva stains. J Forensic Sci 2008;53(5):1117-22.
APA KARADAYI B, KARADAYI Ş, SEZGİN N (2018). Biyolojik Delillerin Tespitinde Kullanılan Tarama ve Doğrulama Testleri ve Bu Konudaki Son Gelişmeler. Türkiye Klinikleri Adli Tıp ve Adli Bilimler Dergisi, 15(2), 80 - 92. 10.5336/forensic.2018-60269
Chicago KARADAYI BEYTULLAH,KARADAYI Şükriye,SEZGİN Nurdan Biyolojik Delillerin Tespitinde Kullanılan Tarama ve Doğrulama Testleri ve Bu Konudaki Son Gelişmeler. Türkiye Klinikleri Adli Tıp ve Adli Bilimler Dergisi 15, no.2 (2018): 80 - 92. 10.5336/forensic.2018-60269
MLA KARADAYI BEYTULLAH,KARADAYI Şükriye,SEZGİN Nurdan Biyolojik Delillerin Tespitinde Kullanılan Tarama ve Doğrulama Testleri ve Bu Konudaki Son Gelişmeler. Türkiye Klinikleri Adli Tıp ve Adli Bilimler Dergisi, vol.15, no.2, 2018, ss.80 - 92. 10.5336/forensic.2018-60269
AMA KARADAYI B,KARADAYI Ş,SEZGİN N Biyolojik Delillerin Tespitinde Kullanılan Tarama ve Doğrulama Testleri ve Bu Konudaki Son Gelişmeler. Türkiye Klinikleri Adli Tıp ve Adli Bilimler Dergisi. 2018; 15(2): 80 - 92. 10.5336/forensic.2018-60269
Vancouver KARADAYI B,KARADAYI Ş,SEZGİN N Biyolojik Delillerin Tespitinde Kullanılan Tarama ve Doğrulama Testleri ve Bu Konudaki Son Gelişmeler. Türkiye Klinikleri Adli Tıp ve Adli Bilimler Dergisi. 2018; 15(2): 80 - 92. 10.5336/forensic.2018-60269
IEEE KARADAYI B,KARADAYI Ş,SEZGİN N "Biyolojik Delillerin Tespitinde Kullanılan Tarama ve Doğrulama Testleri ve Bu Konudaki Son Gelişmeler." Türkiye Klinikleri Adli Tıp ve Adli Bilimler Dergisi, 15, ss.80 - 92, 2018. 10.5336/forensic.2018-60269
ISNAD KARADAYI, BEYTULLAH vd. "Biyolojik Delillerin Tespitinde Kullanılan Tarama ve Doğrulama Testleri ve Bu Konudaki Son Gelişmeler". Türkiye Klinikleri Adli Tıp ve Adli Bilimler Dergisi 15/2 (2018), 80-92. https://doi.org/10.5336/forensic.2018-60269