Yıl: 2020 Cilt: 79 Sayı: 1 Sayfa Aralığı: 23 - 28 Metin Dili: İngilizce DOI: 10.26650/EurJBiol.2020.0011 İndeks Tarihi: 13-10-2020

In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey

Öz:
Objective: Diabetes mellitus is a worldwide metabolic/endocrine disease that causes major medical problems. One of themost important strategies used in the therapy of the diabetes mellitus is the use of inhibition of α-glucosidase and α-amylaseenzymes. Therefore, this study aimed to investigate antidiabetic activities of the hexane and methanol extracts of themedicinal plants from Turkey.Materials and Methods: The hexane and methanol extracts of Euphorbia helioscopia, Ferula elaeochytris, Sideritis albiflora,Sideritis stricta, Sideritis pisidica, Sideritis leptoclada, Salvia chionantha plants were prepared at room temperature. Antidiabeticactivities of the extracts on α-glucosidase and α-amylase enzymes were determined.Results: S. pisidica hexane extract exhibited higher α-amylase inhibitory activity than acarbose (96.60±0.08 %) used as astandard with an inhibition value of 97.99±0.79 % at 1000 µg/mL concentration. In terms of α-glucosidase inhibitory activities,the extracts were ranked in the following order: F. elaeochytris hexane extract > S. leptoclada hexane extract > S. stricta hexaneextract > E. helioscopia hexane extract.Conclusion: In this study, antidiabetic activities of the extracts on α-glucosidase and α-amylase enzymes of the studiedmedicinal plants were screened for the first time. It has been suggested that S. pisidica hexane extract can be used asantidiabetic agent.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Cheng AYY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus, Can Med Assoc J 2005; 172: 213-26.
  • 2. deSales PM, deSouza PM, Simeoni LA, Magalhaes PDA, Silveira D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source.J Pharm Sci 2012; 15: 141-83.
  • 3. World Health Organization. Global report on diabetes; World Health Organization: Geneva, Switzerland, 2016; 1-88.
  • 4. Quan NV, Xuan TD, Tran HD, Thuy NTD, Trang LT, Huong CT, et al. Antioxidant, α-amylase and α-glucosidase inhibitory activities and potential constituents of Canarium tramdenum Bark. Molecules 2019; 24: 605.
  • 5. Wu J, Fang X, Yuan Y, Dong Y, Liang Y, Xie Q, et al. UPLC/Q-TOF-MS profiling of phenolics from Canarium pimela leaves and its vasorelaxant and antioxidant activities. Braz J Pharmacog 2017; 27: 716-23.
  • 6. Yao Y, Sang W, Zhou M, Ren G. Antioxidant and α-glucosidase inhibitory activity of colored grains in China. J Agric Food Chem 2010; 58: 770-4.
  • 7. Tundis R, Marrelli M, Conforti F, Tenuta M, Bonesi M, Menichini F, et al. Trifolium pratense and T. repens (Leguminosae): Edible flower extracts as functional ingredients. Foods 2015; 4: 338-48.
  • 8. Kwon YI, Apostolidis E, Shetty K. In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresource Technol 2008; 99: 2981-8.
  • 9. Dias DA, Urban S, Roessner UA. Historical overview of natural products in drug discovery. Metabolites 2012; 2: 303-36.
  • 10. Toeller M. α-Glucosidase inhibitors in diabetes: Efficacy in NIDDM subjects. Eur J Clin Inves 1994; 24: 31-5.
  • 11. Bischoff H. Pharmacology of alpha-glucosidase inhibition. Eur J Clin Inves 1994; 24: 3-10.
  • 12. Hollander, P. Safety profile of acarbose, an alpha-glucosidase inhibitor. Drugs 1992; 44: 47-53.
  • 13. Etxeberria U, de la Garza AL, Campión J, Martínez JA, Milagro FI. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Tar 2012; 16: 269-97.
  • 14. Valiathan MS. Healing plants. Curr Sci 1998; 75(11): 1122-7.
  • 15. Sathiavelu A, Sangeetha S, Archit R, Mythili S. In vitro anti-diabetic activity of aqueous extract of the medicinal plants Nigella sativa, Eugenia jambolana, Andrographis paniculata and Gymnema sylvestre. Int J Drug Dev & Res 2013; 5(2): 323-8.
  • 16. Swanston-Flatt SK, Flatt PR, Day C, Bailey CJ. Traditional dietary adjuncts for the treatment of Diabetes mellitus. Proc Nutr Soc 1991; 50: 641-50.
  • 17. Gray AM, Flatt PR. Nature’s own pharmacy: The diabetes perspective. Proc Nutr Soc 1997; 56: 507-17.
  • 18. Day C, Bailey CJ. Hypoglycemic agents from traditional plant treatments for diabetes. Int Ind Biotech 1998; 50: 5-8.
  • 19. Sen T, Samanta SK. Medicinal plants, human health and biodiversity: A broad review. Adv Biochem Eng Biotechnol 2015; 147: 59-110.
  • 20. Davis PH. Flora of Turkey and the East Aegean Islands; University Press: Edinburgh, 1998. Vol. 1, p. 1965-85.
  • 21. Lopresti AL. Salvia (Sage): A review of its potential cognitive-enhancing and protective effects. Drugs R D 2017; 17: 53-64.
  • 22. Tel G, Öztürk M, Duru ME, Harmandar M, Topçu G. Chemical composition of the essential oil and hexane extract of Salvia chionantha and their antioxidant and anticholinesterase activities. Food Chem Toxicol 2010; 48: 3189-93.
  • 23. Deveci E, Tel-Çayan G, Duru ME. Phenolic profile, antioxidant, anticholinesterase and anti-tyrosinase activities of the various extracts of Ferula elaeochytris and Sideritis stricta. Int J Food Prop 2018; 21(1): 771-83.
  • 24. Topcu G, Gören A.C. Biological activity of diterpenoids isolated from Anatolian Lamiaceae plants. Rec Nat Prod 2007; 1: 1-16.
  • 25. Gonzalez-Burgos E, Carretero ME, Gomez-Serranillos MP. Sideritis spp.: Uses, chemical composition and pharmacological activities-a review. J Ethnopharmacol 2011; 135: 209-25.
  • 26. Yılar M, Kadıoğlu İ. Salvia species and their biological activities naturally distributed in Tokat province. Sch Bull 2018; 4: 208-12.
  • 27. Mohammad S, Aftab A, Sarwat S. Asafoetida ınhibits early events of carcinogenesis. A chemopreventive study. Life Sci 2001; 68: 1913-21.
  • 28. Iranshahy M, Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assafoetida oleo-gumresin)-a review. J Ethnopharmacol 2011; 134: 1-10.
  • 29. Uzair M, Loothar BA, Choudhary BA. Biological screening of Euphorbia helioscopia L. Pak J Pharm Sci 2009; 22(2): 184-6.
  • 30. Deveci E, Tel-Çayan G, Duru ME. Investigation of chemical composition, antioxidant, anticholinesterase and anti-urease activities of Euphorbia helioscopia. Int J Sec Metabolite 2018; 5: 259-69.
  • 31. Quan NV, Tran HD, Xuan TD, Ahmad A, Dat TD, Khanh TD, et al. Momilactones A and B are α-Amylase and α-glucosidase inhibitors. Molecules 2019; 24: 482.
  • 32. Kim JS, Kwon CS, Son KH. Inhibition of α-glucosidase and amylase by luteolin, a flavonoid. Biosci Biotech Bioch 2010; 64: 2458-61.
  • 33. Amtul Z, Rahman AU, Siddiqui RA, Choudhary MI. Chemistry and mechanism of urease inhibition. Curr Med Chem 2002; 9(14): 1323- 48.
  • 34. Ecemis CG, Atmaca H. Oral antidiabetic agents. J Exp Clin Med 2012; 29: 23-9.
  • 35. Buchholz T, Melzig MF. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med 2015; 81: 771-83.
  • 36. Grochowski DM, Uysal S, Zengin G, Tomczyk M. In vitro antioxidant and enzyme inhibitory properties of Rubus caesius L. Int J Environ Health Res 2018; 12: 1-9.
  • 37. Adımcılar V, Kalaycıoğlu Z, Aydoğdu N, Dirmenci T, Kahraman A, Erim FB. Rosmarinic and carnosic acid contents and correlated antioxidant and antidiabetic activities of 14 Salvia species from Anatolia. J Pharmaceut Biomed 2019; 175: 112763.
  • 38. Zengin G, Atasagun B, Aumeeruddy MZ, Saleemd H, Mollica A, Bahadori MB, et al. Phenolic profiling and in vitro biological properties of two Lamiaceae species (Salvia modesta and Thymus argaeus): A comprehensive evaluation. Ind Crop Prod 2019; 128: 308-14.
  • 39. Kocak MS, Sarikurkcu C, Cengiz M, Kocak S, Uren MC, Tepe B. Salvia cadmica: Phenolic composition and biological activity. Ind Crop Prod 2016; 85: 204-12.
  • 40. Zengin G, Uysal A, Aktumsek A, Mocan A, Mollica A, Locatelli M, et al. Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Biomed Pharmacother 2017; 87: 27-36.
  • 41. Saleem H, Zengin G, Locatelli M, Mollica A, Ahmad I, Mahomoodally FM, et al. In vitro biological propensities and chemical profiling of Euphorbia milii Des Moul (Euphorbiaceae): A novel source for bioactive agents. Ind Crop Prod 2019; 130: 9-15.
  • 42. Zengin G, Uysal A, Diuzheva A, Gunes E, Jeko J, Cziaky Z, et al. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: A multi-functional insight. J Pharm Biomed 2018; 160: 374-82.
  • 43. Zengin G, Sarikurkcu C, Aktumsek A, Ceylan R. Sideritis galatica Bornm.: A source of multifunctional agents for the management of oxidative damage, Alzheimer’s’s and diabetes mellitus. J Funct Food 2014; 11: 538-47.
  • 44. Zengin G, Uğurlu A, Baloglu MC, Diuzheva A, Jeko J, Cziáky Z, et al. Chemical fingerprints, antioxidant, enzyme inhibitory, and cell assaysof three extracts obtained from Sideritis ozturkii Aytac¸ & Aksoy:An endemic plant from Turkey. J Phamaceut Biomed 2019; 171: 118-25.
  • 45. Loizzoa MR, Saab AM, Tundis R, Menichini F, Bonesi M, Piccolo V, et al. In vitro inhibitory activities of plants used in Lebanon traditional medicine against angiotensin converting enzyme (ACE) and digestive enzymes related to diabetes. J Ethnopharmacol 2008; 119: 109-16.
  • 46. Ekin HN, Deliorman Orhan D, Erdoğan Orhan İ, Orhan N, Aslan M. Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants. J Res Pharm 2019; 23(4): 749-58.
  • 47. Deveci E, Tel-Çayan G, Yıldırım H, Duru ME. Chemical composition, antioxidant, anticholinesterase and anti-urease activities of Sideritis pisidica Boiss. & Heldr. endemic to Turkey. Marmara Pharm J 2017; 21(4): 898-905.
  • 48. Deveci E, Tel‐Çayan G, Duru ME, Öztürk M. Phytochemical contents, antioxidant effects, and inhibitory activities of key enzymes associated with Alzheimer’s disease, ulcer, and skin disorders of Sideritis albiflora and Sideritis leptoclada. J Food Biochem 2019; 14: e13078.
  • 49. Saleem U, Ahmad B, Ahmad M, Hussain K, Bukhari NI. Anti-nociceptive, anti-inflammatory and anti-pyretic activities of latex and leaves methanol extract of Euphorbia helioscopia. Asian Pac J Trop Disease 2015; 5: 322-8.
  • 50. Awaad AS, Alothman MR, Zain YM, Zain GM, Alqasoumi SI, Hassan DA. Comparative nutritional value and antimicrobial activities between three Euphorbia species growing in Saudi Arabia. Saudi Pharm J 2017; 25: 1226-30.
  • 51. Askun T, Tumen G, Satil F, Ates M. Characterization of the phenolic composition and antimicrobial activities of Turkish medicinal plants. Pharm Biol 2009; 47: 563-71.
  • 52. Dulger B, Gonuz A, Bican T. Antimicrobial studies on three endemic species of Sideritis from Turkey. Acta Biol Cracov Bot 2005; 47: 153-6.
  • 53. Ayar-Kayali Hulya, Urek Raziye Ozturk, Nakiboglu, Mahmure, Tarhan L. Antioxidant activities of endemic Sideritis leptoclada and Mentha dumetorum aqueous extracts used in Turkey folk medicine. J Food Process Pres 2009; 33: 285-95.
APA Deveci E, Tel-Çayan G, DURU M (2020). In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. , 23 - 28. 10.26650/EurJBiol.2020.0011
Chicago Deveci Ebru,Tel-Çayan Gulsen,DURU Mehmet Emin In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. (2020): 23 - 28. 10.26650/EurJBiol.2020.0011
MLA Deveci Ebru,Tel-Çayan Gulsen,DURU Mehmet Emin In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. , 2020, ss.23 - 28. 10.26650/EurJBiol.2020.0011
AMA Deveci E,Tel-Çayan G,DURU M In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. . 2020; 23 - 28. 10.26650/EurJBiol.2020.0011
Vancouver Deveci E,Tel-Çayan G,DURU M In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. . 2020; 23 - 28. 10.26650/EurJBiol.2020.0011
IEEE Deveci E,Tel-Çayan G,DURU M "In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey." , ss.23 - 28, 2020. 10.26650/EurJBiol.2020.0011
ISNAD Deveci, Ebru vd. "In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey". (2020), 23-28. https://doi.org/10.26650/EurJBiol.2020.0011
APA Deveci E, Tel-Çayan G, DURU M (2020). In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. European Journal of Biology, 79(1), 23 - 28. 10.26650/EurJBiol.2020.0011
Chicago Deveci Ebru,Tel-Çayan Gulsen,DURU Mehmet Emin In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. European Journal of Biology 79, no.1 (2020): 23 - 28. 10.26650/EurJBiol.2020.0011
MLA Deveci Ebru,Tel-Çayan Gulsen,DURU Mehmet Emin In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. European Journal of Biology, vol.79, no.1, 2020, ss.23 - 28. 10.26650/EurJBiol.2020.0011
AMA Deveci E,Tel-Çayan G,DURU M In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. European Journal of Biology. 2020; 79(1): 23 - 28. 10.26650/EurJBiol.2020.0011
Vancouver Deveci E,Tel-Çayan G,DURU M In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey. European Journal of Biology. 2020; 79(1): 23 - 28. 10.26650/EurJBiol.2020.0011
IEEE Deveci E,Tel-Çayan G,DURU M "In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey." European Journal of Biology, 79, ss.23 - 28, 2020. 10.26650/EurJBiol.2020.0011
ISNAD Deveci, Ebru vd. "In vitro Antidiabetic Activity of Seven Medicinal Plants Naturally Growing in Turkey". European Journal of Biology 79/1 (2020), 23-28. https://doi.org/10.26650/EurJBiol.2020.0011