Yıl: 2019 Cilt: 8 Sayı: 3 Sayfa Aralığı: 541 - 544 Metin Dili: İngilizce DOI: 10.5455/medscience.2018.07.8996 İndeks Tarihi: 14-10-2020

Green synthesized silver nanoparticles: Morphology and antibacterial contact effects

Öz:
In the study in which the green synthesis method was preferred, silver nanoparticles (Ag NP’s), which preferred fig (Ficus carica) leaf extracts as a reducing agent, were obtained from their saline solutions. The morphological characteristics of the obtained Ag NPs were studied and antibacterial effects on 8 different bacteria (K. pneumonia, E. coli, P. mirabilis, Shigella, A. baumannii, S. aureus, S. aureus, S. epidermidis) were investigated. Transmission Electron Microscopy (TEM) and UV-Vis spectrophotometer determined morphology and formation of nanoparticles, respectively. The UV-vis absorbance spectra of AgNP exhibit increasing surface plasmon peaks with time of 446 nm. Nanoparticle sizes are at an average value of 13 nm in the 7-33 nm range. The antibacterial effects of Ag NPs vary from bacterial to bacterial and depending on the applied dose and show a contact effect. Positive results were obtained against both gram-positive and negative bacteria and the results were shared.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. AP. Nat Biotechnol. 2005;23:41-745.
  • 2. Jin R, Cao Y, Mirkin CA, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Sci. 2001;294:1901-3.
  • 3. Henglein A. Physicochemical properties of small metal particles in solution:" microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem. 1993;97:5457-71.
  • 4. Olson ME, Wright JB, Lam K, et al. Healing of porcine donor sites covered with silver coated dressings. Eur J Surg. 2000;166:486-9.
  • 5. Sun RW, Chen R, Chung NP, et al. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun. 2005;40:5059-61.
  • 6. Aymonier C, Schlotterbeck U, Antonietti L, et al. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun. 2002;24:3018-9.
  • 7. Podsiadlo P, Paternel S, Rouillard JM, et al. Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties. Langmui. 2005;21:11915-21.
  • 8. Tian J, Wong KK, Ho CM, et al. Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem. 2007;2:129-36.
  • 9. Roy N, Barik A. Green synthesis of silver nanoparticles from the unexploited weed resources. Int J Nanotechnol. 2010;4:95.
  • 10. Charusheela R, Tapan C, Bijaya S, et al. Synthesis of silver nanoparticles from the aqueous extract of leaves of ocimum sanctum for enhanced antibacterial activity. J chem. 2013;278925:7.
  • 11. Leela A, Vivekanandan M. Tapping the unexploited plant resources for the synthesis of silver nanoparticles. Afr J Biotechnol. 2008;17:3162-5.
  • 12. Kowshik M, Deshmukh N, Vogel W, et al. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol. Bioeng. 2002;78:583-8.
  • 13. Klaus Joerger T, Joerger R, Olsson E, et al. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 2001;1:15-20.
  • 14. Govindaraju K, Tamilselvan S, Kiruthiga V, et al. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopesticides. 2010;3:394-9.
  • 15. Mandal D, Bolander ME, Mukhopadhyay D, et al. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol. 2006;69:485-92.
  • 16. Alsammarraie FK, Wang W, Zhou P, et al. Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 2018;171:398-405.
  • 17. Patil MP, Singh RD, Koli PB, et al. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb Pathog. 2018;121:184-9.
  • 18. Khatami M, Sharifi I, Nobre MA, et al. Waste-grass-mediated green synthesis of silver nanoparticles and evaluation of their anticancer, antifungal and antibacterial activity. Green Chemistry Letters and Reviews, 2018;11:125-34.
  • 19. Bindhu MR, Amala BM, Jeeva M. Green synthesis of silver nanoparticles and its antibacterial activity. 2017
  • 20. Ankamwar B, Damle C, Ahmad A, et al. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol. 2005;5:1665-71.
  • 21. Rajasekharreddy P, Rani PU, Sreedhar B. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach J. Nanopart Res. 2010;12:1711-21.
  • 22. Balalakshmi C, Gopinath K. Green synthesis of silver nanoparticles using Sphaeranthus indicus leaf extract and their antibacterial activity. J Pharm Res Int. 2017;4:679-682.
  • 23. Gopinath K, Gowri S, Arumugam A. Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J Nanostructure Chem. 2013;3:68.
  • 24. Gopinath K, Kumaraguru S, Bhakyaraj K, et al. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb Pathog. 2016;101:1-11.
  • 25. Karthika V, Arumugam A, Gopinath K, et al. Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J Photochem Photobiol B. 2017;167:189-99.
  • 26. Rolim WR, Pelegrino MT, de Araújo Lima B, et al. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Sci. 2019;463:66-74.
  • 27. Chandirika JU, Annadurai G. Biosynthesis and Characterization of Silver Nanoparticles Using Leaf Extract Abutilon indicum. Global J Biotechnol Biochemistry. 2018;13: 07-11.
  • 28. Yazdi MET, Khara J, Sadeghnia HR, et al. Biosynthesis, characterization, and antibacterial activity of silver nanoparticles using Rheum turkestanicum shoots extract. Rese Chemical Int. 2018;442:1325-34.
  • 29. Chinnappan S, Kandasamy S, Arumugam S, et al. Biomimetic synthesis of silver nanoparticles using flower extract of Bauhinia purpurea and its antibacterial activity against clinical pathogens. Environ Sci Pollut Res Int. 2018;25:963-9.
  • 30. Kanmani P, Rhim JW. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chemistry, 2014;148:162-9
APA BİLGİC E, AYDİN S, OZGEN A, NİZAMLİOGLU M (2019). Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. , 541 - 544. 10.5455/medscience.2018.07.8996
Chicago BİLGİC Erdi,AYDİN Sinem Gurkan,OZGEN Arzu,NİZAMLİOGLU Mustafa Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. (2019): 541 - 544. 10.5455/medscience.2018.07.8996
MLA BİLGİC Erdi,AYDİN Sinem Gurkan,OZGEN Arzu,NİZAMLİOGLU Mustafa Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. , 2019, ss.541 - 544. 10.5455/medscience.2018.07.8996
AMA BİLGİC E,AYDİN S,OZGEN A,NİZAMLİOGLU M Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. . 2019; 541 - 544. 10.5455/medscience.2018.07.8996
Vancouver BİLGİC E,AYDİN S,OZGEN A,NİZAMLİOGLU M Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. . 2019; 541 - 544. 10.5455/medscience.2018.07.8996
IEEE BİLGİC E,AYDİN S,OZGEN A,NİZAMLİOGLU M "Green synthesized silver nanoparticles: Morphology and antibacterial contact effects." , ss.541 - 544, 2019. 10.5455/medscience.2018.07.8996
ISNAD BİLGİC, Erdi vd. "Green synthesized silver nanoparticles: Morphology and antibacterial contact effects". (2019), 541-544. https://doi.org/10.5455/medscience.2018.07.8996
APA BİLGİC E, AYDİN S, OZGEN A, NİZAMLİOGLU M (2019). Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. Medicine Science, 8(3), 541 - 544. 10.5455/medscience.2018.07.8996
Chicago BİLGİC Erdi,AYDİN Sinem Gurkan,OZGEN Arzu,NİZAMLİOGLU Mustafa Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. Medicine Science 8, no.3 (2019): 541 - 544. 10.5455/medscience.2018.07.8996
MLA BİLGİC Erdi,AYDİN Sinem Gurkan,OZGEN Arzu,NİZAMLİOGLU Mustafa Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. Medicine Science, vol.8, no.3, 2019, ss.541 - 544. 10.5455/medscience.2018.07.8996
AMA BİLGİC E,AYDİN S,OZGEN A,NİZAMLİOGLU M Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. Medicine Science. 2019; 8(3): 541 - 544. 10.5455/medscience.2018.07.8996
Vancouver BİLGİC E,AYDİN S,OZGEN A,NİZAMLİOGLU M Green synthesized silver nanoparticles: Morphology and antibacterial contact effects. Medicine Science. 2019; 8(3): 541 - 544. 10.5455/medscience.2018.07.8996
IEEE BİLGİC E,AYDİN S,OZGEN A,NİZAMLİOGLU M "Green synthesized silver nanoparticles: Morphology and antibacterial contact effects." Medicine Science, 8, ss.541 - 544, 2019. 10.5455/medscience.2018.07.8996
ISNAD BİLGİC, Erdi vd. "Green synthesized silver nanoparticles: Morphology and antibacterial contact effects". Medicine Science 8/3 (2019), 541-544. https://doi.org/10.5455/medscience.2018.07.8996