Yıl: 2019 Cilt: 18 Sayı: 2 Sayfa Aralığı: 73 - 79 Metin Dili: İngilizce DOI: 10.4274/uob.galenos.2018.1090 İndeks Tarihi: 23-10-2020

Targeted Agents and Resistance Mechanism in Renal Cell Cancer

Öz:
Renal cell carcinoma (RCC) exhibits multidrug resistance protein P-glycoprotein expression due to the proximal tubular origin and in this regard,it is resistant to a large number of cytotoxic chemotherapy. The identification of the molecular pathogenesis, genetics, and epigenetics of RCC hasled to new target points such as vascular endothelial growth factor. Tyrosine kinase inhibitors have been used mainly for treatment, but recently,immune checkpoint inhibitors have also been used in the treatment of RCC. Despite these treatments, response rates are not sufficient in the majorityof patients. Primary resistance or acquired resistance to the treatment might be seen. Defining these resistance mechanisms will contribute to themanagement of the treatment and will help in to identify new treatment targets. In this review, we focus on the molecular mechanisms and resistancemechanisms of targeted-therapy.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7-30.
  • 2. Li QK, Pavlovich CP, Zhang H, et al. Challenges and opportunities in the proteomic characterization of clear cell renal cell carcinoma (ccRCC): A critical step towards the personalized care of renal cancers. Semin Cancer Biol 2018; doi: 10.1016/j.semcancer.2018.06.004.
  • 3. Rini BI, Campbell SC, Escudier B. Renal cell carcinoma. Lancet 2009; 373:1119-1132.
  • 4. Yap NY, Rajandram R, Ng KL, et al. Genetic and Chromosomal Aberrations and Their Clinical Significance in Renal Neoplasms. BioMed research international 2015;2015:476508.
  • 5. Maher ER. Genomics and epigenomics of renal cell carcinoma. Seminars in Cancer Biology 2012;23:10-17.
  • 6. Latif F, Tory K, Gnarra J, et al Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993;260:1317-1320.
  • 7. van Houwelingen KP, van Dijk BA, Hulsbergen-van de Kaa CA, et al. Prevalence of von Hippel-Lindau gene mutations in sporadic renal cell carcinoma: results from The Netherlands cohort study. BMC cancer 2005;5:57.
  • 8. Moch H, Schraml P, Bubendorf L, et al. Intratumoral heterogeneity of von Hippel-Lindau gene deletions in renal cell carcinoma detected by fluorescence in situ hybridization. Cancer Res 1998;58:2304-2309.
  • 9. Clifford SC, Prowse AH, Affara NA, et al. Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis. Genes Chromosomes Cancer 1998;22:200-209.
  • 10. Fishman MN. Targeted Therapy of Kidney Cancer: Keeping the Art Around the Algorithms. Cancer Control 2013;20:222-232.
  • 11. Singh RB, Amare Kadam PS. Investigation of tumor suppressor genes apart from VHL on 3p by deletion mapping in sporadic clear cell renal cell carcinoma (cRCC). Urol Oncol 2013;31:1333-1342.
  • 12. Donninger H, Clark JA, Monaghan MK, et al. Cell cycle restriction is more important than apoptosis induction for RASSF1A protein tumor suppression. J Biol Chem 2014; 289:31287-31295.
  • 13. Yanagawa N, Tamura G, Oizumi H, et al. Promoter hypermethylation of RASSF1A and RUNX3 genes as an independent prognostic prediction marker in surgically resected non-small cell lung cancers. Lung Cancer 2007;58:131-138.
  • 14. Morrissey C, Martinez A, Zatyka M, et al. Epigenetic inactivation of the RASSF1A 3p21.3 tumor suppressor gene in both clear cell and papillary renal cell carcinoma. Cancer Res 2001;61:7277-7281.
  • 15. Duns G, Hofstra RM, Sietzema JG, et al. Targeted exome sequencing in clear cell renal cell carcinoma tumors suggests aberrant chromatin regulation as a crucial step in ccRCC development. Hum Mutat 2012; 33:1059-1062.
  • 16. Lichner Z, Scorilas A, White NM, et al. The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell renal cell carcinoma. Am J Pathol 2013;182:1163-1170.
  • 17. Liao L, Testa JR, Yang H. The Roles of Chromatin-Remodelers and Epigenetic Modifiers in Kidney Cancer. Cancer Genet 2015;208:206-214.
  • 18. Li J, Guo L, Ai Z. An integrated analysis of cancer genes in clear cell renal cell carcinoma. Future Oncol 2017;13:715-725.
  • 19. Guo H, German P, Bai S, et al. The PI3K/AKT Pathway and Renal Cell Carcinoma. J Genet Genomics 2015;42:343-353.
  • 20. Sternberg CN, Davis ID, Mardiak J, et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 2010;28:1061-1068.
  • 21. Sternberg CN, Hawkins RE, Wagstaff J, et al. A randomised, doubleblind phase III study of pazopanib in patients with advanced and/ or metastatic renal cell carcinoma: final overall survival results and safety update. Eur J Cancer 2013;49:1287-1296.
  • 22. Motzer RJ, Hutson TE, Pharm D, et al. Sunitinib versus Interferon Alfa in Metastatic Renal-Cell Carcinoma. N Engl J Med 2007;356:115-124.
  • 23. Motzer RJ, Hutson TE, Cella D, et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 2013;369:722-731.
  • 24. Motzer RJ, Hutson TE, McCann L, et al. Overall survival in renalcell carcinoma with pazopanib versus sunitinib. N Engl J Med 2014;370:1769-1770.
  • 25. Escudier B, Pluzanska A, Koralewski P, et al. Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 2007; 370:2103-2111.
  • 26. Dranitsaris G, Vincent MD, Yu J, et al. Development and validation of a prediction index for hand-foot skin reaction in cancer patients receiving sorafenib. Ann Oncol 2012;23:2103-2108.
  • 27. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 2011;378:1931-1939.
  • 28. Hutson TE, Lesovoy V, Al-Shukri S, et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label phase 3 trial. Lancet Oncol 2013;14:1287-1294.
  • 29. Yakes FM, Chen J, Tan J, et al. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth. Mol Cancer Ther 2011;10:2298-2308.
  • 30. Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 2015;373:1814-1823.
  • 31. Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol 2016;17:917-927.
  • 32. Hasinoff BB, Wu X, Nitiss JL, et al. The anticancer multi-kinase inhibitor dovitinib also targets topoisomerase I and topoisomerase II. Biochem Pharmacol 2012; 84:1617-1626.
  • 33. Motzer RJ, Hutson TE, Glen H, et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 2015;16:1473-1482.
  • 34. Motzer RJ, Hutson TE, Ren M, et al. Independent assessment of lenvatinib plus everolimus in patients with metastatic renal cell carcinoma. Lancet Oncol 2016; 17:e4-e5.
  • 35. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006;5:671-688.
  • 36. Creigton CJ, Morgan M, Gunaratne PH, et al. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013;499:43-49.
  • 37. Figlin RA, Kaufmann I, Brechbiel J. Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: New strategies for overcoming resistance to VEGFR and mTORC1 inhibitors. Int J Cancer 2013;133:788-796.
  • 38. Hudes G, Carducci M, Tomczak P, et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007;356:2271-2281.
  • 39. Hutson TE, Escudier B, Esteban E, et al. Randomized Phase III Trial of Temsirolimus Versus Sorafenib As Second-Line Therapy After Sunitinib in Patients With Metastatic Renal Cell Carcinoma. J Clin Oncol 2014;32:760-767
  • 40. Calvo E, Escudier B, Motzer RJ, et al. Everolimus in metastatic renal cell carcinoma: Subgroup analysis of patients with 1 or 2 previous vascular endothelial growth factor receptor-tyrosine kinase inhibitor therapies enrolled in the phase III RECORD-1 study. Eur J Cancer 2012;48:333-339.
  • 41. George S, Motzer RJ, Hammers HJ, et al. Safety and Efficacy of Nivolumab in Patients With Metastatic Renal Cell Carcinoma Treated Beyond Progression: A Subgroup Analysis of a Randomized Clinical Trial. JAMA Oncol 2016;2:1179-1186.
  • 42. Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 2015;373:1803-1813.
  • 43. Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N Engl J Med 2018;378:1277-1290.
  • 44. Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005;25:9543-9553.
  • 45. Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer--preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 2010;37:430-439.
  • 46. Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol 2013;94:41-53.
  • 47. Atkins MB, McDermott DF, Powles T, et al. IMmotion150: A phase II trial in untreated metastatic renal cell carcinoma (mRCC) patients (pts) of atezolizumab (atezo) and bevacizumab (bev) vs and following atezo or sunitinib (sun). Am Soc Clin Oncol 2017(suppl):4505-4505
  • 48. Gordan JD, Lal P, Dondeti VR, et al. HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 2008;14:435-446.
  • 49. Bergers G, Hanahan D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 2008;8:592-603.
  • 50. Gobé G, Rubin M, Williams G, et al. Apoptosis and expression of Bcl-2, Bcl-XL, and Bax in renal cell carcinomas. Cancer Invest 2002;20:324-332.
  • 51. Adelaiye R, Ciamporcero E, Miles KM, et al. Sunitinib dose escalation overcomes transient resistance in clear cell renal cell carcinoma and is associated with epigenetic modifications. Mol Cancer Ther 2015;14:513-522.
  • 52. Casanovas O, Hicklin DJ, Bergers G, et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 2005;8:299-309.
  • 53. Martin D, Galisteo R, Gutkind JS. CXCL8/IL8 stimulates vascular endothelial growth factor (VEGF) expression and the autocrine activation of VEGFR2 in endothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1) complex. J Biol Chem 2009;284:6038-6042.
  • 54. Currie MJ, Gunningham SP, Turner K, et al. Expression of the angiopoietins and their receptor Tie2 in human renal clear cell carcinomas; regulation by the von Hippel-Lindau gene and hypoxia. J Pathol 2002;198:502-510.
  • 55. Pantuck AJ, Seligson DB, Klatte T, et al. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 2007;109:2257-2267.
  • 56. Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 2009;23:537-548.
  • 57. Crawford Y, Kasman I, Yu L, et al. PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 2009;15:21-34.
  • 58. Reinmuth N, Liu W, Jung YD, et al. Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. FASEB J 2001;15:1239-1241.
  • 59. Xian X, Håkansson J, Ståhlberg A, et al. Pericytes limit tumor cell metastasis. J Clin Invest 2006;116:642-651.
  • 60. Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 2004;6:409-421.
  • 61. Shojaei F, Lee JH, Simmons BH, et al. HGF/c-Met acts as an alternative angiogenic pathway in sunitinib-resistant tumors. Cancer Res 2010;70:10090-10100.
  • 62. Lu KV, Chang JP, Parachoniak CA, et al. VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 2012; 22:21-35.
  • 63. Arao T, Matsumoto K, Furuta K, et al. Acquired drug resistance to vascular endothelial growth factor receptor 2 tyrosine kinase inhibitor in human vascular endothelial cells. Anticancer Res 2011;31:2787-2796.
  • 64. Gotink KJ, Broxterman HJ, Labots M, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Cancer Res 2011;17:7337-7346.
  • 65. Grünwald V, Weikert S, Seidel C, et al. Efficacy of sunitinib re-exposure after failure of an mTOR inhibitor in patients with metastatic RCC. Onkologie 2011;34:310-314.
  • 66. van der Veldt AA, Eechoute K, Gelderblom H, et al. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin Cancer Res 2011;17:620-629.
  • 67. Beuselinck B, Karadimou A, Lambrechts D, et al. VEGFR1 single nucleotide polymorphisms associated with outcome in patients with metastatic renal cell carcinoma treated with sunitinib - a multicentric retrospective analysis. Acta Oncol 2014;53:103-112.
  • 68. Prior C, Perez-Gracia JL, Garcia-Donas J, et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS One 2014;9:e86263.
  • 69. Rini BI, Wilding G, Hudes G, et al. Phase II study of axitinib in sorafenib-refractory metastatic renal cell carcinoma. J Clin Oncol 2009;27:4462-4468.
  • 70. Bridgeman VL, Wan E, Foo S, et al. Preclinical Evidence That Trametinib Enhances the Response to Antiangiogenic Tyrosine Kinase Inhibitors in Renal Cell Carcinoma. Mol Cancer Ther 2016;15:172-83.
  • 71. Broekman F, Giovannetti E, Peters GJ. Tyrosine kinase inhibitors: Multi-targeted or single-targeted? World J Clin Oncol 2011;2:80-93.
  • 72. Schmid TA, Gore ME, Sunitinib in the treatment of metastatic renal cell carcinoma. Ther Adv Urol 2016;8:348-371.
APA REZAPOURBEHNAGH S, Yasar H, Arslan C, ÜRÜN Y (2019). Targeted Agents and Resistance Mechanism in Renal Cell Cancer. , 73 - 79. 10.4274/uob.galenos.2018.1090
Chicago REZAPOURBEHNAGH Shaghayegh,Yasar Hatime,Arslan Cagatay,ÜRÜN Yüksel Targeted Agents and Resistance Mechanism in Renal Cell Cancer. (2019): 73 - 79. 10.4274/uob.galenos.2018.1090
MLA REZAPOURBEHNAGH Shaghayegh,Yasar Hatime,Arslan Cagatay,ÜRÜN Yüksel Targeted Agents and Resistance Mechanism in Renal Cell Cancer. , 2019, ss.73 - 79. 10.4274/uob.galenos.2018.1090
AMA REZAPOURBEHNAGH S,Yasar H,Arslan C,ÜRÜN Y Targeted Agents and Resistance Mechanism in Renal Cell Cancer. . 2019; 73 - 79. 10.4274/uob.galenos.2018.1090
Vancouver REZAPOURBEHNAGH S,Yasar H,Arslan C,ÜRÜN Y Targeted Agents and Resistance Mechanism in Renal Cell Cancer. . 2019; 73 - 79. 10.4274/uob.galenos.2018.1090
IEEE REZAPOURBEHNAGH S,Yasar H,Arslan C,ÜRÜN Y "Targeted Agents and Resistance Mechanism in Renal Cell Cancer." , ss.73 - 79, 2019. 10.4274/uob.galenos.2018.1090
ISNAD REZAPOURBEHNAGH, Shaghayegh vd. "Targeted Agents and Resistance Mechanism in Renal Cell Cancer". (2019), 73-79. https://doi.org/10.4274/uob.galenos.2018.1090
APA REZAPOURBEHNAGH S, Yasar H, Arslan C, ÜRÜN Y (2019). Targeted Agents and Resistance Mechanism in Renal Cell Cancer. Üroonkoloji Bülteni, 18(2), 73 - 79. 10.4274/uob.galenos.2018.1090
Chicago REZAPOURBEHNAGH Shaghayegh,Yasar Hatime,Arslan Cagatay,ÜRÜN Yüksel Targeted Agents and Resistance Mechanism in Renal Cell Cancer. Üroonkoloji Bülteni 18, no.2 (2019): 73 - 79. 10.4274/uob.galenos.2018.1090
MLA REZAPOURBEHNAGH Shaghayegh,Yasar Hatime,Arslan Cagatay,ÜRÜN Yüksel Targeted Agents and Resistance Mechanism in Renal Cell Cancer. Üroonkoloji Bülteni, vol.18, no.2, 2019, ss.73 - 79. 10.4274/uob.galenos.2018.1090
AMA REZAPOURBEHNAGH S,Yasar H,Arslan C,ÜRÜN Y Targeted Agents and Resistance Mechanism in Renal Cell Cancer. Üroonkoloji Bülteni. 2019; 18(2): 73 - 79. 10.4274/uob.galenos.2018.1090
Vancouver REZAPOURBEHNAGH S,Yasar H,Arslan C,ÜRÜN Y Targeted Agents and Resistance Mechanism in Renal Cell Cancer. Üroonkoloji Bülteni. 2019; 18(2): 73 - 79. 10.4274/uob.galenos.2018.1090
IEEE REZAPOURBEHNAGH S,Yasar H,Arslan C,ÜRÜN Y "Targeted Agents and Resistance Mechanism in Renal Cell Cancer." Üroonkoloji Bülteni, 18, ss.73 - 79, 2019. 10.4274/uob.galenos.2018.1090
ISNAD REZAPOURBEHNAGH, Shaghayegh vd. "Targeted Agents and Resistance Mechanism in Renal Cell Cancer". Üroonkoloji Bülteni 18/2 (2019), 73-79. https://doi.org/10.4274/uob.galenos.2018.1090