Yıl: 2019 Cilt: 10 Sayı: 4 Sayfa Aralığı: 1220 - 1226 Metin Dili: İngilizce DOI: 10.1016/j.apr.2019.02.005 İndeks Tarihi: 25-10-2020

Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories

Öz:
To investigate the mass concentration, size-distribution, height stratification and season variability of atmospheric particulate matter, the data were collected at two sampling sites: residential quarters in Ekaterinburg,Russia, from March to May 2016 and Belyy Island, Yamal Peninsula, Russia, without any industrial air pollutionin July of the same year. The particles size distribution in Ekaterinburg showed that most particles had diametersin the range of 0.5–2.5 μm. In Belyy Island the particles size distributions had two dominants: Land Breeze andSea Breeze patterns, which associated with the wind direction. The first time the air dust content and theparticles size distribution was studied at 73.1° North latitude.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Bibliyografik
  • Albuquerque, M., Coutinho, M., Rodrigues, J., Ginja, J., Borrego, C., 2017. Long-term monitoring of trace metals in PM10 and total gaseous mercury in the atmosphere of Porto, Portugal. Atmos. Pollut. Res. 8, 535–544. https://doi.org/10.1016/j.apr.2016. 12.001.
  • Alfaro-Moreno, E., Martinez, L., Garcia-Cuellar, C., Bonner, J.C., Murray, J.C., Rosas, I., Rosales, S.P., Osornio-Vargas, A.R., 2002. Biologic effects induced in vitro by PM10 from three different zones of Mexico City. Environ. Health Perspect. 110, 715–720.
  • Amato, F., Bedogni, M., Padoan, E., Queroll, X., Ealo, M., Rivas, I., 2017. Characterization of road dust emissions in milan: impact of vehicle fleet speed. Aerosol and Air Quality Research 17, 2438–2449. https://doi.org/10.4209/aaqr.2017.01.0017.
  • AQI, 2017. Air Quality Index (AQI) project. http://aqicn.org/city accessed in June 2017.
  • Atkinson, R.W., Fuller, G.W., Anderson, H.R., Harrison, R.M., Armstrong, B., 2010. Urban ambient particle metrics and health. A time series analysis. Epidemiology 21, 501–511.
  • Baglaeva, E.M., Buevich, A.G., Sergeev, A.P., Sedometov, G.S., 2016. Mobile Atmospheric Dust Sampling Post. Patent of the Russian Federation on utility model RU 175394 U1 (In Russian).
  • Bisht, D.S., Tiwari, S., Dumka, U.C., Srivastava, A.K., Safai, P.D., Ghude, S.D., Chate, D.M., Rao, P.S.P., Ali, K., Prabhakaran, T., Panickar, A.S., Soni, V.K., Attri, S.D., Tunved, P., Chakrabarty, R.K., Hopke, P.K., 2016. Tethered balloon-born and groundbased measurements of black carbon and particulate profiles within the lower troposphere during the foggy period in Delhi, India. Sci. Total Environ. 573, 894–905.
  • Brown, R.J.C., Goddard, S.L., Butterfield, D.M., Brown, A.S., Robins, C., Mustoe, C.L., McGhee, E.A., 2015. Ten years of mercury measurement at urban and industrial air quality monitoring stations in the UK. Atmos. Environ. 109, 1–8.
  • Chung, W., Ossamor, O., Sharifi, V., Swithenbank, J., 2008. Characterisation of Airborne particulate matter in a city environment. J. Mod. Appl. Sci. 2, 17–32.
  • Correia, A.W., Pope III, C.A., Dockery, D.W., Wang, Y., Ezzati, M., Dominici, F., 2013. The effect of air pollution control on life expectancy in the United States: an analysis of 545 us counties for the period 2000 to 2007. Epidemiology 24 (1), 23–31.
  • EEA, 2013. Air Quality in Europe – 2013 Report. European Environment Agency, Copenhagen Report No 9/2013.
  • Fang, Y., Naik, V., Horowitz, L.W., Mauzerall, D.L., 2013. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmos. Chem. Phys. 13, 1377–1394.
  • Galloway, J.N., Thornton, J.D., Norton, S.A., Volchok, H.L., McLean, R.A., 1982. Trace metals in atmospheric deposition: a review and assessment. Atmos. Environ. 16, 1677–1700.
  • Guerreiro, C., Foltescu, V., de Leeuw, F., 2014. Air quality status and trends in Europe. Atmos. Environ. 98, 376–384.
  • Hara, K., Osada, K., Nishita-Hara, C., Yamanouchi, T., 2011. Seasonal variations and vertical features of aerosol particles in the Antarctic troposphere. Atmos. Chem. Phys. 11, 5471–5484.
  • He, J., Mao, H., Gong, S., Yu, Y., Wu, L., Liu, H., Chen, Y., Jing, B., Ren, P., Zou, Ch., 2017. Investigation of particulate matter regional transport in Beijing based on numerical simulation. Aerosol and Air Quality Research 17, 1181–1189.
  • ICRP, 1994. Human Respiratory Tract Model for Radiological Protection, vol. 24 ICRP Publication 66//Annals of the ICRP (1-3).
  • Kassomenos, P.A., Kelessis, A., Paschalidou, A.K., Petrakakis, M., 2011. Identification of sources and processes affecting particulate pollution in Thessaloniki, Greece. Atmos. Environ. 45, 7293–7300.
  • Kim, K.-H., Kabir, E., Kabir, Sh., 2015. A review on the human health impact of airborne particulate matter. Environ. Int. 74, 136–143. https://doi.org/10.1016/j.envint. 2014.10.005.
  • Kocbach, A., Johansen, B.V., Schwarze, P.E., Namork, E., 2005. Analytical electron microscopy of combustion particles: a comparison of vehicle exhaust and residential wood smoke. Sci. Total Environ. 346, 231–243.
  • Kottek, M., Grieser, J., Beck, Ch., Rudolf, B., Rubel, F., 2006. World Map of the KöppenGeiger climate classification updated. Meteorol. Z. 15 (3), 259–263. https://doi.org/ 10.1127/0941-2948/2006/0130.
  • Krasnov, H., Kloog, I., Friger, M., Katra, I., 2016. The Spatio-Temporal Distribution of Particulate Matter during Natural Dust Episodes at an Urban Scale. PLoS One 11 (8), e0160800. https://doi.org/10.1371/journal.pone.0160800.
  • Lehtomäki, H., Korhonen, A., Asikainen, A., Karvosenoja, N., Kupiainen, K., Paunu, V.-V., Savolahti, M., Sofiev, M., Palamarchuk, Y., Karppinen, A., Kukkonen, J., Hänninen, O., 2018. Health impacts of ambient air pollution in Finland. Int. J. Environ. Res. Public Health 15, 736. https://doi.org/10.3390/ijerph15040736.
  • Levy, J.I., 2016. Fine particulate matter, risk assessment, and risk management. Risk Anal. 36 (9), 1745–1747. https://doi.org/10.1111/risa.12673.
  • Mohanraj, R., Azeez, P.A., Priscilla, T., 2004. Heavy metals in airborne particulate matter of urban Coimbatore. Arch. Environ. Contam. Toxicol. 47 (2), 162–167.
  • Murr, L.E., Esquivel, E.V., Bang, J.J., 2004. Characterization of nanostructure phenomena in airborne particulate aggregates and their potential for respiratory health effects. J. Mater. Sci. Mater. Med. 15, 237–247.
  • Ostro, B., Hu, J., Goldberg, D., Reynolds, P., Hertz, A., Bernstein, L., Kleeman, M.J., 2015. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: results from the California teachers study cohort. Environ. Health Perspect. 123 (6), 549–556.
  • Pipal, A.S., Jan, R., Satsangi, P.G., Tiwari, S., Taneja, A., 2014. Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5 and PM10) over Agra, India. Aerosol Air Qual. Res. 14, 1685–1700.
  • Pope III, C.A., Burnett, R.T., Thun, M.J., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 287 (9), 1132–1141.
  • Querol, X., Alastuey, A., Lopez-Soler, A., Plana, F., Puicercus, J.A., Ruiz, C.R., Mantilla, E., Juan, R., 1998. Seasonal evolution of suspended particles around a coal-fired power chemical characterization. Atmos. Environ. 32 (4), 719–731.
  • Rovelli, S., Cattaneo, A., Borghi, F., Spinazzè, A., Campagnolo, D., Limbeck, A., Cavallo, D.M., 2017. Mass concentration and size-distribution of atmospheric particulate matter in an urban environment. Aerosol and Air Quality Research 17, 1142–1155. https://doi.org/10.4209/aaqr.2016.08.0344.
  • Sánchez de la Campa, A.M., de la Rosa, J., Querolc, X., Alastuey, A., Mantilla, E., 2007. Geochemistry and origin of PM10 in the Huelva region, southwestern Spain. Environ. Res. 103, 305–316. https://doi.org/10.1016/j.envres.2006.06.011.
  • Soukup, J.M., Becker, S., 2001. Human alveolar macrophage responses to air pollution particulates are associated with insoluble components of coarse material, including particulate endotoxins. Toxicol. Appl. Pharmacol. 171, 20–26.
  • Valavanidis, A., Fiotakis, K., Vlachogianni, T., 2008. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 26 (4), 339–362. https://doi.org/10.1080/ 10590500802494538.
  • Vincent, J.H., 1990. The fate of inhaled aerosols: a review of observed trends and some generalizations. Ann. Occup. Hyg. 34, 623–637.
  • WHO Regional Office for Europe, 2013. Review of Evidence on Health Aspects of Air Pollution (REVIHAAP). Technical report. Copenhagen. http://www.euro.who.int/ en/health-topics/environment-and-health/airquality/publications/2013/review-ofevidence-on-health-aspects-of-air-pollution-revihaap-project-finaltechnical-report.
  • WHO, 2016. Health Risk Assessment of Air Pollution - General Principles. WHO Regional Office for Europe, Copenhagen. http://www.euro.who.int/__data/assets/pdf_file/ 0006/298482/Health-risk-assessment-air-pollution-General-principles-en.pdf?ua=1.
  • Yue, W., Li, X., Liu, J., Li, Y., Yu, X., Deng, B., Wan, T., Zhang, G., Huang, Y., He, W., Hua, W., Shao, L., Li, W., Yang, Sh., 2006. Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles. Sci. Total Environ. 368, 916–925.
APA BAGLAEVA E, SERGEEV A, BUEVİCH A, SUBBOTİNA I, SHİCHKİN A (2019). Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. , 1220 - 1226. 10.1016/j.apr.2019.02.005
Chicago BAGLAEVA E. M.,SERGEEV A. P.,BUEVİCH A. G.,SUBBOTİNA I. E.,SHİCHKİN A. V. Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. (2019): 1220 - 1226. 10.1016/j.apr.2019.02.005
MLA BAGLAEVA E. M.,SERGEEV A. P.,BUEVİCH A. G.,SUBBOTİNA I. E.,SHİCHKİN A. V. Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. , 2019, ss.1220 - 1226. 10.1016/j.apr.2019.02.005
AMA BAGLAEVA E,SERGEEV A,BUEVİCH A,SUBBOTİNA I,SHİCHKİN A Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. . 2019; 1220 - 1226. 10.1016/j.apr.2019.02.005
Vancouver BAGLAEVA E,SERGEEV A,BUEVİCH A,SUBBOTİNA I,SHİCHKİN A Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. . 2019; 1220 - 1226. 10.1016/j.apr.2019.02.005
IEEE BAGLAEVA E,SERGEEV A,BUEVİCH A,SUBBOTİNA I,SHİCHKİN A "Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories." , ss.1220 - 1226, 2019. 10.1016/j.apr.2019.02.005
ISNAD BAGLAEVA, E. M. vd. "Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories". (2019), 1220-1226. https://doi.org/10.1016/j.apr.2019.02.005
APA BAGLAEVA E, SERGEEV A, BUEVİCH A, SUBBOTİNA I, SHİCHKİN A (2019). Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. Atmospheric Pollution Research, 10(4), 1220 - 1226. 10.1016/j.apr.2019.02.005
Chicago BAGLAEVA E. M.,SERGEEV A. P.,BUEVİCH A. G.,SUBBOTİNA I. E.,SHİCHKİN A. V. Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. Atmospheric Pollution Research 10, no.4 (2019): 1220 - 1226. 10.1016/j.apr.2019.02.005
MLA BAGLAEVA E. M.,SERGEEV A. P.,BUEVİCH A. G.,SUBBOTİNA I. E.,SHİCHKİN A. V. Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. Atmospheric Pollution Research, vol.10, no.4, 2019, ss.1220 - 1226. 10.1016/j.apr.2019.02.005
AMA BAGLAEVA E,SERGEEV A,BUEVİCH A,SUBBOTİNA I,SHİCHKİN A Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. Atmospheric Pollution Research. 2019; 10(4): 1220 - 1226. 10.1016/j.apr.2019.02.005
Vancouver BAGLAEVA E,SERGEEV A,BUEVİCH A,SUBBOTİNA I,SHİCHKİN A Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories. Atmospheric Pollution Research. 2019; 10(4): 1220 - 1226. 10.1016/j.apr.2019.02.005
IEEE BAGLAEVA E,SERGEEV A,BUEVİCH A,SUBBOTİNA I,SHİCHKİN A "Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories." Atmospheric Pollution Research, 10, ss.1220 - 1226, 2019. 10.1016/j.apr.2019.02.005
ISNAD BAGLAEVA, E. M. vd. "Particulate matter size distribution in air surface layer of Middle Ural and Arctic territories". Atmospheric Pollution Research 10/4 (2019), 1220-1226. https://doi.org/10.1016/j.apr.2019.02.005