Yıl: 2020 Cilt: 22 Sayı: 64 Sayfa Aralığı: 259 - 269 Metin Dili: İngilizce DOI: 10.21205/deufmd.2020226425 İndeks Tarihi: 30-10-2020

Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation

Öz:
Flow along a cavity is of special interest for researchers due to the occurrence of free shear layer flowand related high levels of sound and pressure forces. In this study, turbulent flow along an open cavityat a low inlet Mach number (Ma = 0.034) is modelled by Large Eddy Simulations (LES). The velocityprofiles at various stations inside the open cavity are compared to available experimental data. It isfound that LES results agree with experimental data and detects the transient pressure change in theflow field satisfactorily. Transient pressure data in the flow field is evaluated in acoustic analogy. Thenoise generated by the cavity is compared with the established Rossiter modes and is found to bereasonable. To create an effect on the sound pressure levels (SPL), a small obstacle with quadrilateralcross section is immersed in the shear layer at three different locations. This causes that the SPL peaksare reduced compared to the case without any obstacle. Thus, cavity-induced noise form specificfrequencies are redistributed to high frequency broadband noise as a result of this passive flowcontrol method.
Anahtar Kelime:

Zamana Bağlı Kavite Akışı Aeroakustiğinin Büyük Girdap Simülasyonu ile Sayısal Olarak İncelenmesi

Öz:
Bir kavite boyunca akış, serbest kayma tabakası akışının oluşması ve buna bağlı olarak yüksek seviyelerde ses ve basınç kuvvetleri nedeniyle araştırmacılar için özel bir ilgi alanı oluşturmaktadır. Bu çalışmada, düşük Mach sayısındaki (Ma = 0.034) açık bir kavite boyunca türbülanslı akış Büyük Girdap Simülasyonları (LES) ile modellenmiştir. Açık kavite içindeki çeşitli konumlardaki hız profilleri, mevcut deneysel verilerle karşılaştırılmıştır. LES sonuçlarının deneysel verilerle uyuştuğu ve akış alanındaki zamana bağlı basınç çalkantılarını tatmin edici şekilde tespit edebildiği bulunmuştur. Akış alanındaki bu basınç verileri akustik analojide değerlendirilmiştir. Kavitenin ürettiği gürültü, Rossiter modlarıyla karşılaştırılmış ve makul seviyede bulunmuştur. Ses basıncı seviyeleri (SPL) üzerinde bir etki yaratmak için, kesme katmanına üç farklı noktada dörtgen kesitli küçük bir engel daldırılmıştır. Bu, herhangi bir engel olmadığı duruma kıyasla SPL doruklarının azalmasına neden olmaktadır. Bu nedenle, kavite kaynaklı gürültüye özgü frekanslar, bu pasif akış kontrol yönteminin bir sonucu olarak yüksek frekanslı geniş bant gürültüsüne yeniden dağıtılır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Crook, S.D., Lau, T.C.W., Kelso, R.M. 2013. ThreeDimensional Flow within Shallow-Narrow Cavities, Journal of Fluid Mechanics, Vol. 735, pp. 587–612. DOI: 10.1017/jfm.2013.519
  • [2] Lopez. L.V. 2010. Prediction of Landing Gear Noise Reduction and Comparison to Measurements. 16th AIAA/CEAS Aeroacoustics Conference, Hampton, USA.
  • [3] Lopez. L.V. 2009. A New Approach to Complete Aircraft Landing Gear Noise Prediction. The Pennsylvania State University, PhD Thesis, Pennsylvania, USA.
  • [4] Nouzawa. T., Li. Y., Kasaki. N., Nakamura. T. 2011. Mechanism of Aerodynamic Noise Generated from Front-Pillar and Door Mirror of Automobile, Journal of Environment and Engineering, Vol. 6, Issue 3, pp. 615–626. DOI: 10.1299/jee.6.615
  • [5] Li. G. 2015. Numerical Simulation of Environmental Flow over Buildings for Renewable Energy Application. Arizona State University, Master Thesis, Arizona, USA.
  • [6] Sarohia. V., Massier. P.F. 1977. Control of Cavity Noise, Journal of Aircraft, Vol. 14, pp. 833–837. DOI: 10.2514/3.58862
  • [7] Cattafesta, L.N., Song, Q., Williams, D.R., Rowley, C.W., Alvi, F.S. 2008. Active Control of Flow-Induced Cavity Oscillations, Progress in Aerospace Science, Vol. 44, pp. 479–502. DOI: 10.1016/j.paerosci.2008.07.002
  • [8] Zafer. B., Cosgun. F, 2016. Aeroacoustics Investigation of Incompressible Unsteady Cavity Flow, ”, Journal of The Faculty of Engineering and Architecture of Gazi University, Vol. 31-3, pp. 665– 675. DOI: 10.17341/gummfd.34239
  • [9] Rossiter. J. 1966. Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds, Aeronautical Research Council Reports and Memoranda, London, England.
  • [10] Basovsky. V.G., Gorban. I.M., Khomenko. O.V. 2018. Modification of Hydrodynamic and Acoustic Fields Generated by a Cavity with Fluid Suction, Modern Mathematics and Mechanics, Chapter 9, pp 137-158.
  • [11] East. L.F. 1966. Aerodynamically Induced Resonance in Rectangular Cavities, Journal of Sound and Vibration, Vol. 3, pp. 277–287. DOI: 10.1016/0022-460X(66)90096-4
  • [12] Heller. H.H., Bliss. D.B. 1975. The Physical Mechanism of Flow-Induced Pressure Fluctuations in Cavities and Concepts for Their Suppression. AIAA 2nd Aero-Acoustics Conference, Hampton, USA.
  • [13] Shaw. L.L. 1979. Suppression of Aerodynamically Induced Cavity Pressure Oscillations, The Journal of the Acoustical Society of America 62, S80, Vol. 62. DOI: 10.1121/1.2016395
  • [14] Larchevêque. L., Sagaut. P., Comte. P. 2004. Large Eddy Simulation of A Compressible Flow in A Threedimensional Open Cavity at High Reynolds Number, Journal of Fluid Mechanics, Vol. 516, pp. 265–301. DOI: 10.1017/S0022112004000709
  • [15] Yamouni. S., Mettot. C., Sipp. D., Jacquin. L. 2013. Passive Control of Cavity Flows, Journal of Aerospace Lab, Issue 6.
  • [16] Zafer. B., Konan. O. 2017. Aeroacoustic Analysis of Cavity – Airfoil Interaction, Dokuz Eylul UniversityFaculty of Engineering Journal of Science and Engineering, Vol. 19, pp. 279-294. DOI: 10.21205/deufmd. 2017195523
  • [17] Zafer. B., Cosgun. F. 2018. Aeroacoustics Analysis of Cavity Flow, Journal of Thermal Science and Technology, Vol. 38-2, pp 25-38.
  • [18] Ffowcs Williams. JE., Hawkings. D. 1969. Sound Generation by Turbulence and Surfaces in Arbitrary Motion, Philosophical Transactions of The Royal Society of London Series A, Mathematical-Physical and Engineering Sciences, Vol. 264, pp. 321–342 . DOI: 10.1098/rsta.1969.0031
  • [19] Lighthill. M.J. 1951. On Sound Generated Aerodynamically I. General Theory, Philosophical Transactions of The Royal Society of London Series A, Mathematical-Physical and Engineering Sciences, Vol. 211, pp. 564-587. DOI: 10.1098/rspa.1952.0060
  • [20] Ansys Inc. 2013. Fluent Theory Guide.
  • [21] Ozsoy. E. 2010. Numerical Simulation of Incompressible Flow Over Three-Dimensional Rectangular Cavity, Istanbul Technical University, Graduate School of Science Engineering and Technology, PhD Thesis, Istanbul, Turkey.
  • [22] Cosgun, F. 2018. Aeroacoustics Investigation of Low Mach Number Cavity Flow. Istanbul Technical University, Graduate School of Science Engineering and Technology, Master Thesis, 119p, Istanbul, Turkey.
APA COŞKUN F, Cadirci S (2020). Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. , 259 - 269. 10.21205/deufmd.2020226425
Chicago COŞKUN Furkan,Cadirci Sertac Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. (2020): 259 - 269. 10.21205/deufmd.2020226425
MLA COŞKUN Furkan,Cadirci Sertac Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. , 2020, ss.259 - 269. 10.21205/deufmd.2020226425
AMA COŞKUN F,Cadirci S Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. . 2020; 259 - 269. 10.21205/deufmd.2020226425
Vancouver COŞKUN F,Cadirci S Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. . 2020; 259 - 269. 10.21205/deufmd.2020226425
IEEE COŞKUN F,Cadirci S "Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation." , ss.259 - 269, 2020. 10.21205/deufmd.2020226425
ISNAD COŞKUN, Furkan - Cadirci, Sertac. "Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation". (2020), 259-269. https://doi.org/10.21205/deufmd.2020226425
APA COŞKUN F, Cadirci S (2020). Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 22(64), 259 - 269. 10.21205/deufmd.2020226425
Chicago COŞKUN Furkan,Cadirci Sertac Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22, no.64 (2020): 259 - 269. 10.21205/deufmd.2020226425
MLA COŞKUN Furkan,Cadirci Sertac Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol.22, no.64, 2020, ss.259 - 269. 10.21205/deufmd.2020226425
AMA COŞKUN F,Cadirci S Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2020; 22(64): 259 - 269. 10.21205/deufmd.2020226425
Vancouver COŞKUN F,Cadirci S Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2020; 22(64): 259 - 269. 10.21205/deufmd.2020226425
IEEE COŞKUN F,Cadirci S "Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation." Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 22, ss.259 - 269, 2020. 10.21205/deufmd.2020226425
ISNAD COŞKUN, Furkan - Cadirci, Sertac. "Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation". Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/64 (2020), 259-269. https://doi.org/10.21205/deufmd.2020226425