Yıl: 2020 Cilt: 26 Sayı: 2 Sayfa Aralığı: 219 - 230 Metin Dili: İngilizce DOI: 10.5336/dentalsci.2019-66364 İndeks Tarihi: 31-10-2020

Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study

Öz:
Objective: The purpose of this study was to evaluate the biomechanical behaviors of non-engaging titanium base abutments (N-TiBA) bonded to three-unit zirconia restorations in terms of stress dis-tribution in implants and prosthetic components. Material and Methods: Three-dimensional (3D) models of a tissue-level and bone-level implant systems and their screw-retained abutments (SRA) and N-TiBA were created. A bone block representing the maxillary right posterior region was created, and the implants were placed in the first premolar and first molar areas. Six different three-unit implant-sup-ported fixed dental prostheses (I-FDPs) models were created: tissue-level implant, N-TiBA, 6 mm crown height (TL6); tissue-level implant, N-TiBA, 10 mm crown height (TL10); bone-level implant, SRA, 6 mm crown height (SR6); bone-level implant, SRA, 10 mm crown height (SR10); bone-level implant, N-TiBA, 6 mm crown height (BL6); bone-level implant, N-TiBA, 10 mm crown height (BL10). The restoration material was determined as monolithic zirconia. In each model, equal vertical (200 N) and oblique (100 N) loads were applied to each tooth simultaneously. The stress distribution in the restoration, implant, abut-ments, and basal screws was evaluated through the von Mises stress analysis. Results: The TL6 and TL10 exhibited higher von Mises stress values in the implants and lower von Mises stress values in the abut-ments than in the other FEA models. The increase in the crown height resulted in higher stress values under oblique loading compared to ver-tical loading. Conclusion: The non-engaging connection type and crown height affected the stress distribution in the implant and pros-thetic components.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1.Silva GC, Cornacchia TM, de Magalhães CS, Bueno AC, Moreira AN. Biomechanical evalu-ation of screw-and cement-retained implant-supported prostheses: a nonlinear finite element analysis. J Prosthet Dent. 2014;112(6):1479-88. [Crossref] [PubMed]
  • 2.Wittneben JG, Millen C, Brägger U. Clinical performance of screw-versus cement-retained fixed implant-supported reconstructions-a sys-tematic review. Int J Oral Maxillofac Implants. 2014;29 Suppl:84-98. [Crossref] [PubMed]
  • 3.Sailer I, Muhlemann S, Zwahlen M, Hämmerle CH, Schneider D. Cemented and screw-re-tained implant reconstructions: a systematic review of the survival and complication rates. Clin Oral Implants Res. 2012;23 Suppl 6:163-201. [Crossref] [PubMed]
  • 4.Lemos CA, de Souza Batista VE, Almeida DA, Santiago Júnior JF, Verri FR, Pellizzer EP. Evaluation of cement-retained versus screw-retained implant-supported restorations for marginal bone loss: a systematic review and meta-analysis. J Prosthet Dent. 2016;115(4): 419-27. [Crossref] [PubMed]
  • 5.Wilson TG Jr. The positive relationship be-tween excess cement and peri-implant dis-ease: a prospective clinical endoscopic study. J Periodontol. 2009;80(9):1388-92. [Crossref] [PubMed]
  • 6.Korsch M, Obst U, Walther W. Cement-asso-ciated peri-implantitis: a retrospective clinical observational study of fixed implant-supported restorations using a methacrylate cement. Clin Oral Implants Res. 2014;25(7):797-802. [Crossref] [PubMed]
  • 7.Venezia P, Torsello F, Cavalcanti R, D’Amato S. Retrospective analysis of 26 complete-arch implant-supported monolithic zirconia pros-theses with feldspathic porcelain veneering limited to the facial surface. J Prosthet Dent. 2015;114(4):506-12. [Crossref] [PubMed]
  • 8.Worni A, Kolgeci L, Rentsch-Kollar A, Kat-soulis J, Mericske-Stern R. Zirconia-based screw-retained prostheses supported by im-plants: a retrospective study on technical com-plications and failures. Clin Implant Dent Relat Res. 2015;17(6):1073-81. [Crossref] [PubMed]
  • 9.Mehra M, Vahidi F. Complete mouth implant rehabilitation with a zirconia ceramic system: a clinical report. J Prosthet Dent. 2014;112(1): 1-4. [Crossref] [PubMed]
  • 10. Konstantinidis IK, Jacoby S, Rädel M, Böning K. Prospective evaluation of zirconia based tooth-and implant-supported fixed dental pros-theses: 3-year results. J Dent. 2015;43(1):87-93. [Crossref] [PubMed]
  • 11. Guess PC, Att W, Strub JR. Zirconia in fixed implant prosthodontics. Clin Implant Dent Relat Res. 2012;14(5):633-45. [Crossref] [PubMed]
  • 12. de Kok P, Kleverlaan CJ, de Jager N, Kuijs R, Feilzer AJ. Mechanical performance of implant-supported posterior crowns. J Pros-thet Dent. 2015;114(1):59-66. [Crossref] [PubMed]
  • 13. Kaleli N, Sarac D, Külünk S, Öztürk Ö. Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: a three-dimensional finite element analysis study. J Prosthet Dent. 2018;119(3):437-45. [Crossref] [PubMed]
  • 14. Elshiyab SH, Nawafleh N, Walsh L, George R. Fracture resistance and survival of implant-supported, zirconia-based hybrid-abutment crowns: influence of aging and crown struc-ture. J Investig Clin Dent. 2018;9(4):e12355. [Crossref] [PubMed]
  • 15. Morneburg TR, Pröschel PA. Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont. 2002;15(1):20-7.
  • 16. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic sys-tems: laboratory and clinical performance. Dent Clin North Am. 2011;55(2):333-52. [Crossref] [PubMed]
  • 17. Chang JS, Ji W, Choi CH, Kim S. Catastrophic failure of a monolithic zirconia prosthesis. J Prosthet Dent. 2015;113(2):86-90. [Crossref] [PubMed]
  • 18. Rojas-Vizcaya F. Full zirconia fixed detach-able implant-retained restorations manufac-tured from monolithic zirconia: clinical report after two years in service. J Prosthodont. 2011;20(7):570-6. [Crossref] [PubMed]
  • 19. Abdulmajeed AA, Lim KG, Närhi TO, Cooper LF. Complete-arch implant-supported mono-lithic zirconia fixed dental prostheses: a sys-tematic review. J Prosthet Dent. 2016;115(6): 672-7.e1. [Crossref] [PubMed]
  • 20. Cheng CW, Chien CH, Chen CJ, Papaspyri-dakos P. Complete-mouth implant rehabilita-tion with modified monolithic zirconia implant-supported fixed dental prostheses and an immediate-loading protocol: a clinical re-port. J Prosthet Dent. 2013;109(6):347-52. [Crossref]
  • 21. Cardelli P, Manobianco FP, Serafini N, Mur-mura G, Beuer F. Full-arch, implant-supported monolithic zirconia rehabilitations: pilot clinical evaluation of wear against natural or compos-ite teeth. J Prosthodont. 2016;25(8):629-33. [Crossref] [PubMed]
  • 22. Altarawneh S, Limmer B, Reside GJ, Cooper L. Dual jaw treatment of edentulism using im-plant-supported monolithic zirconia fixed pros-theses. J Esthet Restor Dent. 2015;27(2): 63-70. [Crossref] [PubMed]
  • 23. Brodbeck U. The ZiReal post: a new ceramic implant abutment. J Esthet Restor Dent. 2003;15(1):10-24. [Crossref] [PubMed]
  • 24. Stimmelmayr M, Edelhoff D, Güth JF, Erdelt K, Happe A, Beuer F. Wear at the titanium-ti-tanium and the titanium–zirconia implant-abut-ment interface: a comparative in vitro study. Dent Mater. 2012;28(12):1215-20. [Crossref] [PubMed]
  • 25. Klotz MW, Taylor TD, Goldberg AJ. Wear at the titanium-zirconia implant-abutment inter-face: a pilot study. Int J Oral Maxillofac Im-plants. 2011;26(5):970-5.
  • 26. Taylor TD, Klotz MW, Lawton RA. Titanium tattooing associated with zirconia implant abutments: a clinical report of two cases. Int J Oral Maxillofac Implants. 2014;29(4):958-60. [Crossref] [PubMed]
  • 27. Rojas Vizcaya F. Retrospective 2-to 7-year fol-low-up study of 20 double full-arch implant-supported monolithic zirconia fixed prostheses: measurements and recommen-dations for optimal design. J Prosthodont. 2018;27(6):501-8. [Crossref] [PubMed]
  • 28. Kurbad A, Kurbad S. CAD/CAM-based implant abutments. Int J Comput Dent. 2013;16(2):125-41.
  • 29. Kim JS, Raigrodski AJ, Flinn BD, Rubenstein JE, Chung KH, Mancl LA. In vitro assessment of three types of zirconia implant abutments under static load. J Prosthet Dent. 2013;109(4):255-63. [Crossref]
  • 30. Elshiyab SH, Nawafleh N, Öchsner A, George R. Fracture resistance of implant-supported monolithic crowns cemented to zirconia hy-brid-abutments: zirconia-based crowns vs. lithium disilicate crowns. J Adv Prosthodont. 2018;10(1):65-72. [Crossref] [PubMed] [PMC]
  • 31. Zeller S, Guichet D, Kontogiorgos E, Nagy WW. Accuracy of three digital workflows for implant abutment and crown fabrication using a digital measuring technique. J Prosthet Dent. 2019;121(2):276-84. [Crossref] [PubMed]
  • 32. Kelly JR, Rungruanganunt P. Fatigue behav-ior of computer-aided design/computer-as-sisted manufacture ceramic abutments as a function of design and ceramics processing. Int J Oral Maxillofac Implants. 2016;31(3):601-9. [Crossref] [PubMed]
  • 33. Selz CF, Vuck A, Guess PC. Full-mouth re-habilitation with monolithic CAD/CAM-fabri-cated hybrid and all-ceramic materials: a case report and 3-year follow up. Quintessence Int. 2016;47(2):115-21.
  • 34. Elsayed A, Wille S, Al-Akhali M, Kern M. Ef-fect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zir-conia implant abutments. Clin Oral Implants Res. 2018;29(1):20-7. [Crossref] [PubMed]
  • 35. Worni A, Katsoulis J, Kolgeci L, Worni M, Mer-icske-Stern R. Monolithic zirconia reconstruc-tions supported by teeth and implants: 1-to 3-year results of a case series. Quintessence Int. 2017;48(6):459-67.
  • 36. Epprecht A, Zeltner M, Benic G, Özcan M. A strain gauge analysis comparing 4-unit ve-neered zirconium dioxide implant-borne fixed dental prosthesis on engaging and non-en-gaging abutments before and after torque ap-plication. Clin Exp Dent Res. 2018;4(1):13-8. [Crossref] [PubMed] [PMC]
  • 37. Schoenbaum TR, Stevenson RG, Baling-hasay E. The hemi-engaging fixed dental im-plant prosthesis: a technique for improved stability and handling. J Prosthet Dent. 2018,120(1):17-9. [Crossref] [PubMed]
  • 38. Saidin S, Abdul Kadir MR, Sulaiman E, Ebu Kasim NH. Effects of different implant-abut-ment connections on micromotion and stress distribution: prediction of microgap formation. J Dent. 2012;40(6):467-74. [Crossref] [PubMed]
  • 39. Takahashi JM, Dayrell AC, Consani RL, de Ar-ruda Nóbilo MA, Henriques GE, Mesquita MF. Stress evaluation of implant-abutment con-nections under different loading conditions: a 3D finite element study. J Oral Implantol. 2015;41(2):133-7. [Crossref] [PubMed
  • 40. Eskitascioglu G, Usumez A, Sevimay M, Soykan E, Unsal E. The influence of occlusal loading location on stresses transferred to im-plant-supported prostheses and supporting bone: a three-dimensional finite element study. J Prosthet Dent. 2004;91(2):144-50. [Crossref] [PubMed]
  • 41. Cinel S, Celik E, Sagirkaya E, Sahin O. Ex-perimental evaluation of stress distribution with narrow diameter implants: a finite element analysis. J Prosthet Dent. 2018;119(3):417-25. [Crossref] [PubMed]
  • 42. Franco-Tabares S, Stenport VF, Hjalmarsson L, Johansson CB. Limited effect of cement material on stress distribution of a monolithic translucent zirconia crown: a three-dimen-sional dinite element analysis. Int J Prostho-dont. 2018;31(1):67-70. [Crossref] [PubMed]
  • 43. Lanza A, Aversa R, Rengo S, Apicella D, Api-cella A. 3D FEA of cemented steel, glass and carbon posts in a maxillary incisor. Dent Mater. 2005;21(8):709-15. [Crossref] [PubMed]
  • 44. Soares PV, Santos-Filho PCF, Queiroz EC, Araújo TC, Campos RE, Araújo CA, et al. Fracture resistance and stress distribution in endodontically treated maxillary premolars re-stored with composite resin. J Prosthodont. 2008;17(2):114-9. [Crossref] [PubMed]
  • 45. Katranji A, Misch K, Wang HL. Cortical bone thickness in dentate and edentulous human cadavers. J Periodontol. 2007;78(5):874-8. [Crossref] [PubMed]
  • 46. Wu JC, Wilson PR. Optimal cement space for resin luting cements. Int J Prosthodont. 1994;7(3):209-15.
  • 47. Kious AR, Roberts HW, Brackett WW. Film thicknesses of recently introduced luting ce-ments. J Prosthet Dent. 2009;101(3):189-92. [Crossref]
  • 48. de Faria Almeida DA, Pellizzer EP, Verri FR, Santiago Jr JF, de Carvalho PSP. Influence of tapered and external hexagon connections on bone stresses around tilted dental implants: three-dimensional finite element method with statistical analysis. J Periodontol. 2014;85(2): 261-9. [Crossref] [PubMed]
  • 49. Lin CL, Wang JC, Chang SH, Chen ST. Eval-uation of stress induced by implant type, num-ber of splinted teeth, and variations in periodontal support in tooth-implant-supported fixed partial dentures: a non-linear finite ele-ment analysis. J Periodontol. 2010;81(1):121-30. [Crossref] [PubMed]
  • 50. Iplikçioğlu H, Akça K. Comparative evaluation of the effect of diameter, length and number of implants supporting three-unit fixed partial prostheses on stress distribution in the bone. J Dent. 2002;30(1):41-6. [Crossref]
  • 51. Nissan J, Ghelfan O, Gross O, Priel I, Gross M, Chaushu G. The effect of crown/implant ratio and crown height space on stress distri-bution in unsplinted implant supporting resto-rations. J Oral Maxillofac Surg. 2011;69(7): 1934-9. [Crossref] [PubMed]
  • 52. de Moraes SL, Verri FR, Junior JF Jr, Almeida DA, de Mello CC, Pellizzer EP. A 3-D finite el-ement study of the influence of crown-implant ratio on stress distribution. Braz Dent J. 2013;24(6):635-41. [Crossref] [PubMed]
  • 53. Nishioka RS, de Vasconcellos LG, Jóias RP, Rode Sde M. Load-application devices: a comparative strain gauge analysis. Braz Dent J. 2015;26(3):258-62. [Crossref] [PubMed]
  • 54. Alkan I, Sertgöz A, Ekici B. Influence of oc-clusal forces on stress distribution in pre-loaded dental implant screws. J Prosthet Dent. 2004;91(4):319-25. [Crossref] [PubMed]
APA Kaleli N, URAL Ç (2020). Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. , 219 - 230. 10.5336/dentalsci.2019-66364
Chicago Kaleli Necati,URAL Çağrı Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. (2020): 219 - 230. 10.5336/dentalsci.2019-66364
MLA Kaleli Necati,URAL Çağrı Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. , 2020, ss.219 - 230. 10.5336/dentalsci.2019-66364
AMA Kaleli N,URAL Ç Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. . 2020; 219 - 230. 10.5336/dentalsci.2019-66364
Vancouver Kaleli N,URAL Ç Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. . 2020; 219 - 230. 10.5336/dentalsci.2019-66364
IEEE Kaleli N,URAL Ç "Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study." , ss.219 - 230, 2020. 10.5336/dentalsci.2019-66364
ISNAD Kaleli, Necati - URAL, Çağrı. "Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study". (2020), 219-230. https://doi.org/10.5336/dentalsci.2019-66364
APA Kaleli N, URAL Ç (2020). Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi, 26(2), 219 - 230. 10.5336/dentalsci.2019-66364
Chicago Kaleli Necati,URAL Çağrı Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi 26, no.2 (2020): 219 - 230. 10.5336/dentalsci.2019-66364
MLA Kaleli Necati,URAL Çağrı Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi, vol.26, no.2, 2020, ss.219 - 230. 10.5336/dentalsci.2019-66364
AMA Kaleli N,URAL Ç Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi. 2020; 26(2): 219 - 230. 10.5336/dentalsci.2019-66364
Vancouver Kaleli N,URAL Ç Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi. 2020; 26(2): 219 - 230. 10.5336/dentalsci.2019-66364
IEEE Kaleli N,URAL Ç "Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study." Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi, 26, ss.219 - 230, 2020. 10.5336/dentalsci.2019-66364
ISNAD Kaleli, Necati - URAL, Çağrı. "Biomechanical Behaviors of Implant-Supported Zirconia Restorations Cemented to Novel Screw-Retained Abutment Systems: A Three-Dimensional Finite Element Analysis Study". Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi 26/2 (2020), 219-230. https://doi.org/10.5336/dentalsci.2019-66364