Yıl: 2020 Cilt: 8 Sayı: 1 Sayfa Aralığı: 10 - 21 Metin Dili: İngilizce DOI: 10.5505/jems.2020.84803 İndeks Tarihi: 02-11-2020

TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water

Öz:
Over the last decade, UV disinfection technology has been widely employed in the disinfection of nonnative species in wastewater and process water treatment. In this study, we assessed the feasibility of theadoption of a Taylor-Couette UV reactor in disinfection of unwanted species commonly found in ballastwater. With this purpose, glycerol solutions were used in a Taylor Couette reactor with two differentradius ratios. The observed flow structures and the critical transition values were simultaneouslycompared with each other and literature. Emergent flow structures in TC reactors provide considerableimprovement in axial and radial mixing of particles and increasing the efficiency of the disinfectionof E. coli. The obtained results show the possibility of utilizing the Taylor-Couette UV reactors as analternative method in inactivation of non-native species in the ballast water.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] H. Elcicek, A. Parlak, M. Cakmakci, Effect of Ballast Water on Marine and Coastal Ecology, Journal of Selcuk University Natural and Applied Science. 0 (2013) 454-463–463.
  • [2] L.A. Drake, M.A. Doblin, F.C. Dobbs, Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm, Marine Pollution Bulletin. 55 (2007) 333–341. https://doi.org/10.1016/j. marpolbul.2006.11.007.
  • [3] B. Werschkun, S. Banerji, O.C. Basurko, M. David, F. Fuhr, S. Gollasch, T. Grummt, M.Haarich, A.N. Jha, S. Kacan, A. Kehrer, J. Linders, E. Mesbahi, D. Pughiuc, S.D. Richardson, B. SchwarzSchulz, A. Shah, N. Theobald, U. von Gunten, S. Wieck, T. Höfer, Emerging risks from ballast water treatment: The run-up to the International Ballast Water Management Convention, Chemosphere. 112 (2014) 256– 266. https://doi.org/10.1016/j. chemosphere.2014.03.135.
  • [4] International Maritime Organization (IMO), International Convention for the Control and Management of Ships’ Ballast Water and Sediments, London, 2004.
  • [5] T.D. Waite, J. Kazumi, P.V.Z. Lane, L.L. Farmer, S.G. Smith, S.L. Smith, G. Hitchcock, T.R. Capo, Removal of natural populations of marine plankton by a large-scale ballast water treatment system, Marine Ecology Progress Series. 258 (2003) 51–63. https://doi. org/10.3354/meps258051.
  • [6] J. Moreno-Andrés, L. RomeroMartínez, A. Acevedo-Merino, E. Nebot, UV-based technologies for marine water disinfection and the application to ballast water: Does salinity interfere with disinfection processes?, Science of The Total Environment. 581–582 (2017) 144– 152. https://doi.org/10.1016/j. scitotenv.2016.12.077.
  • [7] N.B. Petersen, T. Madsen, M.A. Glaring, F.C. Dobbs, N.O.G. Jørgensen, Ballast water treatment and bacteria: Analysis of bacterial activity and diversity after treatment of simulated ballast water by electrochlorination and UV exposure, Science of The Total Environment. 648 (2019) 408– 421. https://doi.org/10.1016/j. scitotenv.2018.08.080.
  • [8] O.-K. Hess-Erga, J. MorenoAndrés, Ø. Enger, O. Vadstein, Microorganisms in ballast water: Disinfection, community dynamics, and implications for management, Science of The Total Environment. 657 (2019) 704– 716. https://doi.org/10.1016/j. scitotenv.2018.12.004.
  • [9] D. Wu, H. You, R. Zhang, C. Chen, D.-J. Lee, Ballast waters treatment using UV/Ag–TiO2+O3 advanced oxidation process with Escherichia coli and Vibrio alginolyticus as indicator microorganisms, Chemical Engineering Journal. 174 (2011) 714–718. https://doi. org/10.1016/j.cej.2011.09.087.
  • [10] O. Casas-Monroy, R.D. Linley, P.-S. Chan, J. Kydd, J. Vanden Byllaardt, S. Bailey, Evaluating efficacy of filtration+UV-C radiation for ballast water treatment at different temperatures, Journal of Sea Research. 133 (2018) 20– 28. https://doi.org/10.1016/j. seares.2017.02.001.
  • [11] Z.Lu,K.Zhang,Y. Shi,Y.Huang,X.Wang, Efficient Removal of Escherichia coli from Ballast Water Using a Combined High-Gradient Magnetic SeparationUltraviolet Photocatalysis (HGMSUV/TiO2) System, Water Air Soil Pollut. 229 (2018) 243. https://doi. org/10.1007/s11270-018-3902-2.
  • [12] Y.J. Jung, Y. Yoon, T.S. Pyo, S.-T. Lee, K. Shin, J.-W. Kang, Evaluation of disinfection efficacy and chemical formation using MPUV ballast water treatment system (GloEn-PatrolTM), Environmental Technology. 33 (2012) 1953–1961. https://doi.org/10.1080 /09593330.2012.655315.
  • [13] L.J. Forney, Z. Ye, T. Koutchma, UV Disinfection of E. coli Between Concentric Cylinders: Effects of the Boundary Layer and a Wavy Wall, Ozone: Science & Engineering. 30 (2008) 405–412. https://doi. org/10.1080/01919510802473872.
  • [14] L.J. Forney, C.F. Goodridge, J.A. Pierson, Ultraviolet Disinfection:  Similitude in Taylor−Couette and Channel Flow, Environ. Sci. Technol. 37 (2003) 5015– 5020. https://doi.org/10.1021/ es0303236.
  • [15] Z. Ye, L.J. Forney, T. Koutchma, A.T. Giorges, J.A. Pierson, Optimum UV Disinfection between Concentric Cylinders, Ind. Eng. Chem. Res. 47 (2008) 3444–3452. https://doi. org/10.1021/ie0703641.
  • [16] L.J. Forney, J.A. Pierson, Z. Ye, Juice irradiation with Taylor-Couette flow: UV inactivation of Escherichia coli, J. Food Prot. 67 (2004) 2410–2415. https://doi.org/10.4315/0362- 028x-67.11.2410.
  • [17] F. Crapulli, Disinfection and advanced oxidation of highly absorbing fluids by UV/VUV light: process modeling and validation, Electronic Thesis and Dissertation Repository. (2015). https://ir.lib.uwo.ca/etd/2753.
  • [18] S.T. Wereley, A. Akonur, R.M. Lueptow, Particle–fluid velocities and fouling in rotating filtration of a suspension, Journal of Membrane Science. 209 (2002) 469–484. https://doi. org/10.1016/S0376-7388(02)00365- 4.
  • [19] C.D. Andereck, S.S. Liu, H.L. Swinney, Flow regimes in a circular Couette system with independently rotating cylinders, Journal of Fluid Mechanics. 164 (1986) 155–183. https://doi. org/10.1017/S0022112086002513.
  • [20] Murray Rudman, Mixing and Particle Dispersion in the Wavy Vortex Regime of Taylor-Couette Flow, AICHE Journal. 44 (n.d.) 1015–1026.
  • [21] S.T. Wereley, R.M. Lueptow, Spatiotemporal character of non-wavy and wavy Taylor–Couette flow, Journal of Fluid Mechanics. 364 (1998) 59–80. https://doi.org/10.1017/ S0022112098008969.
  • [22] E. Dluska, J. Wolinski, S. Wronski, Toward Understanding of Two-Phase Eccentric Helical Reactor Performance, Chemical Engineering & Technology. 28 (2005) 1016–1021. https://doi. org/10.1002/ceat.200500140.
  • [23] M. Orlowska, T. Koutchma, M. Kostrzynska, J. Tang, C. Defelice, Evaluation of mixing flow conditions to inactivate Escherichia coli in opaque liquids using pilot-scale Taylor–Couette UV unit, Journal of Food Engineering. 120 (2014) 100–109. https://doi. org/10.1016/j.jfoodeng.2013.07.020.
  • [24] Z.Ye,L.J.Forney,T.Koutchma,A.T.Giorges, J.A. Pierson, Optimum UV Disinfection between Concentric Cylinders, Ind. Eng. Chem. Res. 47 (2008) 3444–3452. https://doi.org/10.1021/ie0703641.
  • [25] A. Akonur, R.M. Lueptow, Threedimensional velocity field for wavy Taylor–Couette flow, Physics of Fluids. 15 (2003) 947–960. https://doi. org/10.1063/1.1556615.
  • [26] L. Romero-Martínez, J. MorenoAndrés, A. Acevedo-Merino, E. Nebot, Improvement of ballast water disinfection using a photocatalytic (UV-C + TiO2) flow-through reactor for saltwater treatment, Journal of ChemicalTechnology&Biotechnology. 89 (2014) 1203–1210. https://doi. org/10.1002/jctb.4385.
APA ELÇİÇEK H, Guzel B (2020). TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. , 10 - 21. 10.5505/jems.2020.84803
Chicago ELÇİÇEK Hüseyin,Guzel Bulent TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. (2020): 10 - 21. 10.5505/jems.2020.84803
MLA ELÇİÇEK Hüseyin,Guzel Bulent TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. , 2020, ss.10 - 21. 10.5505/jems.2020.84803
AMA ELÇİÇEK H,Guzel B TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. . 2020; 10 - 21. 10.5505/jems.2020.84803
Vancouver ELÇİÇEK H,Guzel B TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. . 2020; 10 - 21. 10.5505/jems.2020.84803
IEEE ELÇİÇEK H,Guzel B "TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water." , ss.10 - 21, 2020. 10.5505/jems.2020.84803
ISNAD ELÇİÇEK, Hüseyin - Guzel, Bulent. "TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water". (2020), 10-21. https://doi.org/10.5505/jems.2020.84803
APA ELÇİÇEK H, Guzel B (2020). TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. Journal of Eta Maritime Science, 8(1), 10 - 21. 10.5505/jems.2020.84803
Chicago ELÇİÇEK Hüseyin,Guzel Bulent TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. Journal of Eta Maritime Science 8, no.1 (2020): 10 - 21. 10.5505/jems.2020.84803
MLA ELÇİÇEK Hüseyin,Guzel Bulent TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. Journal of Eta Maritime Science, vol.8, no.1, 2020, ss.10 - 21. 10.5505/jems.2020.84803
AMA ELÇİÇEK H,Guzel B TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. Journal of Eta Maritime Science. 2020; 8(1): 10 - 21. 10.5505/jems.2020.84803
Vancouver ELÇİÇEK H,Guzel B TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water. Journal of Eta Maritime Science. 2020; 8(1): 10 - 21. 10.5505/jems.2020.84803
IEEE ELÇİÇEK H,Guzel B "TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water." Journal of Eta Maritime Science, 8, ss.10 - 21, 2020. 10.5505/jems.2020.84803
ISNAD ELÇİÇEK, Hüseyin - Guzel, Bulent. "TC-UV Reactors Evaluated as an Alternative Option in Treatment of Ballast Water". Journal of Eta Maritime Science 8/1 (2020), 10-21. https://doi.org/10.5505/jems.2020.84803