Yıl: 2020 Cilt: 11 Sayı: 7 Sayfa Aralığı: 1084 - 1090 Metin Dili: İngilizce DOI: 10.1016/j.apr.2020.04.001 İndeks Tarihi: 06-11-2020

Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks

Öz:
Our works frequently examine the emission of pollutants and the prediction of the thermal efficiency of boilersfrom power plants. Power plant systems are strongly coupled. Thus, multi-objective modelling and prediction isalways a difficult problem. Artificial neural network (ANN) modelling is one of the methods used to meet thischallenge. With the increasing requirements of environmental protection, the classical shallow neural networkcan no longer meet the needs of high precision. In recent years, deep neural networks have gradually demonstrated their powerful capabilities. However, can deep neural networks be used to improve model predictionperformance? After many experiments, we successfully construct a sophisticated and stable deep hybrid neuralnetwork model to achieve this requirement. The experimental results show that the performance of the hybridmodel is superior to that of the classical model; we diagram the detailed structure of the model and provide thecorresponding parameter settings in this paper.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Bibliyografik
  • Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H., 2018. Deep convolutional neural network for the automated detection and diagnosis of seizure using eeg signals. Comput. Biol. Med. 100, 270–278.
  • Ansari, H.R., Zarei, M.J., Sabbaghi, S., Keshavarz, P., 2018. A new comprehensive model for relative viscosity of various nanofluids using feed-forward back-propagation MLP neural networks. Int. Commun. Heat Mass Tran. 91, 158–164.
  • Banerjee, I., Ling, Y., Chen, M.C., Hasan, S.A., Langlotz, C.P., Moradzadeh, N., Chapman, B., Amrhein, T., Mong, D., Rubin, D.L., et al., 2019. Comparative effectiveness of convolutional neural network (CNN) and recurrent neural network (RNN) architectures for radiology text report classification. Artif. Intell. Med. 97, 79–88.
  • Bengio, Y.Delalleau, O. On the expressive power of deep architectures. arXiv e-prints (2011) 18–36arXiv:1605. https://link.springer.com/chapter/10.1007%2F978-3-642-24477-3_1 2688.
  • Bengio, Y., LeCun, Y., et al., 2007. Scaling learning algorithms towards AI. Large-scale kernel machines 34 (5), 1–41. https://doi.org/10.1038/nature14539.
  • Cybenko, G., 1989. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems 2 (4), 303–314. https://doi.org/10.1007/bf02551274.
  • Eldan, R.Shamir, O. The power of depth for feedforward neural networks. arXiv e-prints 49 (2016) 907–940. arXiv:1512.03965. http://proceedings.mlr.press/v49/eldan16.pdf.
  • Fukushima, K., 1980. Neocognitron: aself-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36 (4), 193–202. https:// doi.org/10.1007/BF00344251.
  • Glorot, X.Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. arXiv e-prints (2010) 249–256arXiv:1104.3250. http://proceedings.mlr.press/v9/ glorot10a/glorot10a.pdf?hc_location=ufi.
  • A. Graves, Generating Sequences with Recurrent Neural Networks, arXiv preprint arXiv:1308. 0850doi:10.1109/icassp.2013.6638947.
  • A. Graves, N. Jaitly, Towards End-To-End Speech Recognition with Recurrent Neural Networks, arXiv e-prints (2014) 1764–1772arXiv:1303.5778, doi:10.1109/icassp.2017.7953077.
  • Graves, A., Schmidhuber, J., 2011. Offline Handwriting Recognition with Multidimensional Recurrent Neural Networks. https://doi.org/10.1007/978-1-4471-4072-6_12. arXiv eprints (2009) 545–552arXiv:0705.
  • Hao, Z., Kefa, C., Jianbo, M., 2001. Combining neural network and genetic algorithms to optimize low NOx pulverized coal combustion. Fuel 80 (15), 2163–2169.
  • Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neural Comput. 9 (8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.
  • Kingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. pp. 113–127. https:// doi.org/10.1111/itor.12084. arXiv preprint arXiv:1412.6980 22.
  • Kiros, R., Salakhutdinov, R., Zemel, R.S., 2017. Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models. pp. 386. https://doi.org/10.1109/iccv. arXiv preprint arXiv:1411.2539.
  • Krizhevsky, A., Hinton, G., 2010. Convolutional Deep Belief Networks on Cifar-10. pp. 1–9. https://doi.org/10.1145/3065386. Unpublished manuscript 40 (7).
  • A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet Classification with Deep Convolutional Neural Networks, arXiv e-prints 60 (2012) 1097–1105. arXiv:1207.0580, doi:10.1145/ 3065386.
  • LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D., 1990. Handwritten digit recognition with a back-propagation network 26. http://papers. nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network.pdf 396–404.
  • LeCun, Y., Huang, F.J., Bottou, L., 2004. Learning methods for generic object recognition with invariance to pose and lighting. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2 IEEEhttps://doi.org/10. 1109/CVPR.2004.1315150. CVPR 2004. 2004, pp. II–104.
  • LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning, nature 521 (7553), 436–444. https:// doi.org/10.1038/nature14539.
  • H. Lee, R. Grosse, R. Ranganath, A. Y. Ng, Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations, arXiv e-prints 54 (2009) 609–616. arXiv:1206.5241, doi:10.1145/2001269.2001295.
  • Li, G., Niu, P., Liu, C., Zhang, W., 2012. Enhanced combination modeling method for combustion efficiency in coal-fired boilers. Appl. Soft Comput. 12 (10), 3132–3140. https:// doi.org/10.1016/j.asoc.2012.06.016.
  • Liang, S.Srikant, R. Why deep neural networks for function approximation? arXiv preprint arXiv:1610.04161. https://arxiv.org/abs/1610.04161.
  • Mhaskar, P., El-Farra, N.H., Christofides, P.D., 2005. Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Trans. Automat. Contr. 50 (11), 1670–1680. https://doi.org/10.1109/tac.2005.858692.
  • Mohammadi, J., Ataei, M., Kakaei, R.K., Mikaeil, R., Haghshenas, S.S., 2018. Prediction of the production rate of chain saw machine using the multilayer perceptron (MLP) neural network. Civil Engineering Journal 4 (7), 1575–1583.
  • Montufar, G.F.Pascanu, R.Cho, K.Bengio, Y. On the number of linear regions of deep neural networks. arXiv e-prints (2014) 2924–2932arXiv:1402.1869. http://papers.nips.cc/paper/ 5422-on-the-number-of-linear-regions-of.
  • Nair, V.Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. arXiv eprints (2010) 807–814arXiv:1504.00941. https://www.cs.toronto.edu/~hinton/absps/ reluICML.pdf.
  • Pinto, N., Doukhan, D., DiCarlo, J.J., Cox, D.D., 2009. A high-throughput screening approach to discovering good forms of biologically inspired visual representation. PLoS Comput. Biol. 5 (11), e1000579. https://doi.org/10.1371/journal.pcbi.1000579.
  • Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., Liao, Q., 2017. Why and when can deep-but not shallow-networks avoid the curse of dimensionality: a review. Int. J. Autom. Comput. 14 (5), 503–519. https://doi.org/10.1007/s11633-017-1054-2.
  • Schuster, M., Paliwal, K.K., 1997. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45 (11), 2673–2681.
  • Selvin, S., Vinayakumar, R., Gopalakrishnan, E.A., Menon, V.K., Soman, K.P., 2017. Stock price prediction using LSTM, RNN and CNN-sliding window model. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, pp. 1643–1647.
  • Smrekar, J., Assadi, M., Fast, M., Kuštrin, I., De, S., 2009. Development of artificial neural network model for a coal-fired boiler using real plant data. Energy 34 (2), 144–152.
  • Stamenković, L.J., Antanasijević, D.Z., Ristić, M.D.J., Perić-Grujić, A.A., Pocajt, V.V., 2017. Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model. Air Quality, Atmosphere & Health 10 (1), 15–23.
  • I. Sutskever, O. Vinyals, Q. V. Le, Sequence to Sequence Learning with Neural Networks, arXiv e-prints (2014) 3104–3112arXiv:1409.3215, doi:10.3115/v1/p15-1002.
  • Tan, P., Xia, J., Zhang, C., Fang, Q., Chen, G., 2016. Modeling and reduction of NOx emissions for a 700 MW coal-fired boiler with the advanced machine learning method. Energy 94, 672–679.
  • Telgarsky, M. Benefits of depth in neural networks. arXiv preprint arXiv:1602.04485. http:// proceedings.mlr.press/v49/telgarsky16.pdf.
  • Teruel, E., Cortes, C., Diez, L.I., Arauzo, I., 2005. Monitoring and prediction of fouling in coalfired utility boilers using neural networks. Chem. Eng. Sci. 60 (18), 5035–5048.
  • Tunckaya, Y., Koklukaya, E., 2015. Comparative prediction analysis of 600 MWe coal-fired power plant production rate using statistical and neural-based models. J. Energy Inst. 88 (1), 11–18.
  • Turaga, S.C., Murray, J.F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., Denk, W., Seung, H.S., 2010. Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22 (2), 511–538. https://doi.org/10.1162/neco.2009.10-08- 881.
  • O. Vinyals, A. Toshev, S. Bengio, D. Erhan, Show and Tell: A Neural Image Caption Generator, arXiv e-prints (2015) 3156–3164arXiv:1411.4555, doi:10.1109/cvpr.2015.7298935.
  • O. Vinyals, Ł. Kaiser, T. Koo, S. Petrov, I. Sutskever, G. Hinton, Grammar as a foreign language, arXiv e-prints 11 (2015) 2773–2781. arXiv:1412.7449, doi:10.4018/ijwltt.2016100102.
  • Wang, S.-H., Lv, Y.-D., Sui, Y., Liu, S., Wang, S.-J., Zhang, Y.-D., 2018. Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J. Med. Syst. 42 (1), 2.
  • K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, Y. Bengio, Show, attend and tell: neural image caption generation with visual attention, arXiv e-prints 17 (2015) 2048–2057. arXiv:1502.03044, doi:10.1109/tmm.2015.2477044.
  • Yarotsky, D., 2017. Error bounds for approximations with deep ReLU networks. Neural Network. 94, 103–114. https://doi.org/10.1016/j.neunet.2017.07.002.
  • Zhou, H., Cen, K., Fan, J., 2004. Modeling and optimization of the NOx emission characteristics of a tangentially fired boiler with artificial neural networks. Energy 29 (1), 167–183.
APA HU X, NIU P, WANG J, ZHANG X (2020). Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. , 1084 - 1090. 10.1016/j.apr.2020.04.001
Chicago HU Xiaobin,NIU Peifeng,WANG Jianmei,ZHANG Xinxin Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. (2020): 1084 - 1090. 10.1016/j.apr.2020.04.001
MLA HU Xiaobin,NIU Peifeng,WANG Jianmei,ZHANG Xinxin Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. , 2020, ss.1084 - 1090. 10.1016/j.apr.2020.04.001
AMA HU X,NIU P,WANG J,ZHANG X Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. . 2020; 1084 - 1090. 10.1016/j.apr.2020.04.001
Vancouver HU X,NIU P,WANG J,ZHANG X Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. . 2020; 1084 - 1090. 10.1016/j.apr.2020.04.001
IEEE HU X,NIU P,WANG J,ZHANG X "Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks." , ss.1084 - 1090, 2020. 10.1016/j.apr.2020.04.001
ISNAD HU, Xiaobin vd. "Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks". (2020), 1084-1090. https://doi.org/10.1016/j.apr.2020.04.001
APA HU X, NIU P, WANG J, ZHANG X (2020). Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. Atmospheric Pollution Research, 11(7), 1084 - 1090. 10.1016/j.apr.2020.04.001
Chicago HU Xiaobin,NIU Peifeng,WANG Jianmei,ZHANG Xinxin Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. Atmospheric Pollution Research 11, no.7 (2020): 1084 - 1090. 10.1016/j.apr.2020.04.001
MLA HU Xiaobin,NIU Peifeng,WANG Jianmei,ZHANG Xinxin Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. Atmospheric Pollution Research, vol.11, no.7, 2020, ss.1084 - 1090. 10.1016/j.apr.2020.04.001
AMA HU X,NIU P,WANG J,ZHANG X Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. Atmospheric Pollution Research. 2020; 11(7): 1084 - 1090. 10.1016/j.apr.2020.04.001
Vancouver HU X,NIU P,WANG J,ZHANG X Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks. Atmospheric Pollution Research. 2020; 11(7): 1084 - 1090. 10.1016/j.apr.2020.04.001
IEEE HU X,NIU P,WANG J,ZHANG X "Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks." Atmospheric Pollution Research, 11, ss.1084 - 1090, 2020. 10.1016/j.apr.2020.04.001
ISNAD HU, Xiaobin vd. "Multi-objective prediction of coal-fired boiler with a deep hybrid neural networks". Atmospheric Pollution Research 11/7 (2020), 1084-1090. https://doi.org/10.1016/j.apr.2020.04.001