Yıl: 2020 Cilt: 30 Sayı: 1 Sayfa Aralığı: 43 - 53 Metin Dili: İngilizce DOI: 10.4999/uhod.203965 İndeks Tarihi: 06-11-2020

Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells

Öz:
The development of resistance towards chemotherapeutic drugs has become an obstacle in treatment of cancer. Ankaferd Hemostat[ABS] has shown to suppress the proliferation of melanoma cells, but little is known about its’ mechanism. In this study, we demonstrate that ABS can make some melanoma cell lines such as A2058 more sensitive towards etoposide by altering the genes involvedin oxidative phosphorylation [OXPHOS] pathway. ABS treatment has shown to increase the sensitivity of A2058 towards etoposideand showed no effect for SK-MEL-5. Previously known to be more resistant to etoposide, SK-MEL-30 showed least amount of sensitivity to ABS. We found mitochondrion cluster to be the most relevant to genes altered by ABS. To validate our claim, we comparedtwo sets of melanoma cell lines; A375 with A2058 and A375 with SK-MEL-2. The clusters that we obtained from A375 and A2058comparison did contain mitochondrial related clusters, their corresponding p value was not significant. Whereas, the clusters fromA375 and SK-MEL-2 comparison contain 72 genes in ‘oxidoreductase’ cluster with enrichment score of 2.52. To get insight of theoxidoreductase cluster, we put the genes in that cluster to Enrichr. We found that majority of the genes among oxidoreductase clusterparticipate in oxidative phosphorylation and electron transport chain. Our study suggests that the use of ABS prior to etoposide treatment can increase the response of melanoma cell lines because of the alteration of OXPHOS genes.
Anahtar Kelime:

Ankaferd Hemostat’ın Malign Melanom Hücrelerinde Etoposit Direncine Etkisi

Öz:
Kemoterapötik ilaçlara karşı direnç gelişimi, kanser tedavisinde bir engel haline gelmiştir. Ankaferd Hemostat’ın (ABS), melanom hücrelerinin proliferasyonunu baskıladığı gösterilmiştir; ancak mekanizması hakkında çok az şey bilinmektedir. Bu çalışmada, ABS’nin oksidatif fosforilasyon (OXPHOS) yolağında yer alan genleri değiştirerek, A2058 gibi bazı melanom hücre dizilerini etoposide karşı daha duyarlı hale getirilebileceğini gösterdik. Bu çalışmada, ABS tedavisinin A2058’in etoposide duyarlılığını arttırdığı gösterildi, ancak SKMEL-5 için herhangi bir etki gösterilemedi. Daha önce etoposide daha dirençli olduğu bilinen SK-MEL-30, bizim çalışmamızda ABS’ye karşı en az hassasiyet gösterdi. Analizimiz sonucunda, mitokondri kümelerinin ABS tarafından değiştirilen genlerle ilişkili olduğunu gördük. İddiamızı doğrulamak için iki set melanom hücre çizgisini (A375’i A2058 ile ve A375’i SK-MEL-2 ile) karşılaştırdık. A375 ve A2058 karşılaştırmasından elde ettiğimiz kümeler mitokondriyal ilişkili kümeler içermekteydi, ancak p değerleri anlamlı değildi. Öte yandan, A375 ve SK-MEL-2 karşılaştırmasından elde edilen kümeler, 2.52 zenginleştirme skoruna sahip ‘oksidoredüktaz’ kümesinde 72 gen içermekteydi. Oksidoredüktaz kümesini analiz etmek için, bu kümedeki genleri Enrichr’e koyduk. Oksidoredüktaz kümesi içindeki genlerin çoğunun oksidatif fosforilasyona ve elektron taşıma zincirine katıldığını bulduk. Sonuç olarak bu çalışma, etoposit tedavisinden önce ABS kullanımının, OXPHOS genlerinin değişmesi nedeniyle melanom hücre çizgilerinin tepkisini artırabileceğini öne sürmektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Mumcuoglu M, Akin D, Ezer U, Akar N. Ankaferd Blood Stopper induces apoptosis and regulates PAR1 and EPCR expression in human leukemia cells. Egypt J Med Hum Genet 16: 19-27, 2015.
  • 2. Kurt M, Onal I, Akdogan M, et al. Ankaferd Blood Stopper for controlling gastrointestinal bleeding due to distinct benign lesions refractory to conventional antihemorrhagic measures. Can J Gastroenterol 24: 380-384, 2010.
  • 3. Haznedaroglu B, Beyazit Y, Walker S, Haznedaroglu I. Pleiotropic cellular, hemostatic, and biological actions of Ankaferd hemostat. Crit Rev Oncol Hematol 83: 21-34, 2012.
  • 4. Saribas Z, Sener B, Haznedaroglu I, et al. Antimicrobial activity of Ankaferd Blood Stopper® against nosocomial bacterial pathogens. Open Med 5: 198-202, 2010.
  • 5. Koluman A, Akar N, Haznedaroglu I. Antibacterial activities of ankaferd hemostat [ABS] on shiga toxin-producing Escherichia coli and other pathogens significant in foodborne diseases. Turk J Haematol 34: 93-98, 2017.
  • 6. Kocyigit A, Guler E, Haznedaroglu I, Malkan U. Ankaferd hemostat induces DNA damage, apoptosis and cytotoxic activity by generating reactive oxygen species in melanoma and normal cell lines. Int J Clin Exp Med 10: 2116-2126, 2017.
  • 7. Turk S, Malkan UY, Ghasemi M, et al. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines. SAGE Open Med 5: 205031211668951, 2017. doi: 10.1177/2050312116689519.
  • 8. Schadendorf D, Fisher DE, Garbe C, et al. Melanoma. Nat Rev Dis Primers 1: 15003, 2015.
  • 9. Cichorek M, Wachulska M, Stasiewicz A, Tyminska A. Skin melanocytes: biology and development. Postepy Dermatol Alergol 1: 30-41, 2013.
  • 10. Bandarchi B, Ma L, Navab R, et al. From melanocyte to metastatic malignant melanoma. Dermatol Res Pract pii: 583748, 2010.
  • 11. Kalal B, Upadhya D, Pai V. Chemotherapy resistance mechanisms in advanced skin cancer. Oncol Rev 11: 326, 2017.
  • 12. Jiang B. Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis 4: 25-27, 2017.
  • 13. Xie J, Wu H, Dai C, et al. Beyond Warburg effect – dual metabolic nature of cancer cells. Sci Rep 4: 4927, 2014.
  • 14. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS J 274: 1393-1418, 2007.
  • 15. Ashton T, McKenna W, Kunz-Schughart L, Higgins G. Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res 24: 2482-2490, 2018.
  • 16. Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: A tumor’s dilemma?. Biochim Biophys Acta 1807: 552-561, 2011.
  • 17. Vellinga TT, Borovski T, de Boer VC, et al. SIRT1/PGC1 -dependent Increase in oxidative phosphorylation supports chemotherapy resistance of colon cancer. Clin. Cancer Res 21: 2870-2879, 2015.
  • 18. Gottesman M, Fojo T, Bates S. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat Rev Cancer 2: 48-58, 2002.
  • 19. Osley M, Tsukuda T, Nickoloff J. ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 618: 65-80, 2007.
  • 20. Huschtscha L, Bartier W, Ross C, Tattersall M. Characteristics of cancer cell death after exposure to cytotoxic drugs in vitro. Br J Cancer 73: 54-60, 1996.
  • 21. Walker PR, Smith C, Youdale T, et al. Topoisomerase II-reactive chemotherapeutic drugs induce apoptosis in thymocytes. Cancer Res 51: 1078-1085, 1991.
  • 22. Salehan M, Morse H. DNA damage repair and tolerance: a role in chemotherapeutic drug resistance. Br J Biomed Sci 70: 31-40, 2013.
  • 23. Hande K. Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34: 1514-1521, 1998.
  • 24. McClendon A, Osheroff N. DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 623: 83-97, 2007.
  • 25. An X, Xu F, Luo R, et al. The prognostic significance of topoisomerase II alpha protein in early stage luminal breast cancer. BMC Cancer 18: 331, 2018.
  • 26. Ganapathi R, Ganapathi M. Mechanisms regulating resistance to inhibitors of topoisomerase II. Front Pharmacol 4: 89, 2013.
  • 27. Qin Y, Conley A, Grimm E, Roszik J. A tool for discovering drug sensitivity and gene expression associations in cancer cells. PLOS ONE 12: e0176763, 2017.
  • 28. CellTiter-Glo® Luminescent Cell Viability Assay Protocol [2018]. Worldwide.promega.com. Available at: https://worldwide.promega.com/resources/protocols/technical-bulletins/0/celltiter-glo-luminescent-cell-viability-assay-protocol/ [Accessed August 17, 2018].
  • 29. Huang DW, Sherman BT, Tan Q, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35: 169-175, 2007.
  • 30. Mering C. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31: 258-261, 2003.
  • 31. Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44: 90-97, 2016.
  • 32. Haznedaroglu I. Acute in Vitro effects of ABS [Ankaferd Hemostat] on the lymphoid neoplastic cells [B-CLL and RAJI Tumor Cell Lines]. UHOD 4: 253-259, 2014.
  • 33. Türk C, Okay M, Türk S, et al. The impact of JAK/STAT inhibitor ruxolitinib on the genesis of lymphoproliferative diseases. Turk J Med Sci 49: 661-674, 2019.
  • 34. Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer [GDSC]: a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41: 955-961, 2012.
  • 35. Drug: Etoposide - Cancerrxgene - Genomics of Drug Sensitivity in Cancer [2018]. Cancerrxgene.org. Available at: https://www.cancerrxgene.org/translation/Drug/134. Accessed January, 2020.
  • 36. Litvin O, Schwartz S, Wan Z, et al. Interferon α/β Enhances the Cytotoxic Response of MEK Inhibition in Melanoma. Mol Cell 57: 784-796, 2015.
  • 37. Solaini G, Sgarbi G, Baracca A. Oxidative phosphorylation in cancer cells. Biochim Biophys Acta 1807: 534-542, 2011.
  • 38. Molina JR, Sun Y, Protopopova M, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med 24: 1036-1046, 2018.
  • 39. Denko N. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8: 705-713, 2008.
  • 40. Bhattacharya B, Mohd Omar M, Soong R. The Warburg effect and drug resistance. Br J Pharmacol 173: 970-979, 2016.
  • 41. Kuntz EM, Baquero P, Michie AM, et al. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med 23: 1234- 1240, 2017.
  • 42. Bosc C, Selak M, Sarry J. Resistance Is Futile: Targeting mitochondrial energetics and metabolism to overcome drug resistance in cancer treatment. Cell Metab 26: 705-707, 2017.
  • 43. Ippolito L, Marini A, Cavallini L, et al. Metabolic shift toward oxidative phosphorylation in docetaxel resistant prostate cancer cells. Oncotarget 7: 61890-61904, 2016.
  • 44. Yadav N, Kumar S, Marlowe T, et al. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents. Cell Death Dis 6: 1969, 2015.
  • 45. Luo C, Puigserver P, Widlund H. Breaking BRAF[V600E]-drug resistance by stressing mitochondria. Pigment Cell Melanoma Res 29: 401-403, 2016.
  • 46. De Moura MB, Vincent G, Fayewicz SL, et al. Mitochondrial Respiration - An Important Therapeutic Target in Melanoma. PLoS ONE 7: 40690, 2012.
  • 47. Feichtinger RG, Lang R, Geilberger R, et al. Melanoma tumors exhibit a variable but distinct metabolic signature. Exp Dermatol 27: 204-207, 2018.
  • 48. Pollak M. Targeting Oxidative Phosphorylation: Why, When, and How. Cancer Cell 23: 263-264, 2013.
  • 49. Lakhter AJ, Hamilton J, Dagher PC, et al. Ferroxitosis: A cell death from modulation of oxidative phosphorylation and PKM2-dependent glycolysis in melanoma. Oncotarget 5: 12694-12703, 2014.
  • 50. Roesch A, Vultur A, Bogeski I, et al. Overcoming Intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1Bhigh cells. Cancer Cell 23: 811-825, 2013.
  • 51. Haq R, Shoag J, Andreu-Perez P, et al. Oncogenic BRAF Regulates Oxidative Metabolism via PGC1α and MITF. Cancer Cell 23: 302-315, 2013.
  • 52. Fischer GM, Vashisht Gopal YN, McQuade JL, et al. Metabolic strategies of melanoma cells: Mechanisms, interactions with the tumor microenvironment, and therapeutic implications. Pigment Cell Melanoma Res 31: 11-30, 2017.
  • 53. Kopec KK, Bozyczko-Coyne D, Williams M. Target identification and validation in drug discovery: the role of proteomics. Biochem Pharmacol 69: 1133-1139, 2005.
  • 54. Wang P, Wang L, Sha J, et al. Expression and transcriptional regulation of human ATP6V1A gene in gastric cancers. Sci Rep 7: 3015, 2017.
  • 55. Yilmaz E, Gülec S, Torun D, et al. The effects of Ankaferd [R] Blood Stopper on transcription factors in HUVEC and the erythrocyte protein profile. Turk J Haematol 28: 276-285, 2011.
  • 56. Gulec A, Gulec S. Ankaferd Influences mRNA expression of iron-regulated genes during iron-deficiency anemia. Clin Appl Thromb Hemost 24: 960-964, 2018.
APA Ghasemi M, okay m, Malkan U, TÜRK S, Jabbar J, Hocaoglu H, Haznedaroglu I (2020). Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. , 43 - 53. 10.4999/uhod.203965
Chicago Ghasemi Mehdi,okay mufide,Malkan Umit Yavuz,TÜRK Seyhan,Jabbar Javaid,Hocaoglu Helin,Haznedaroglu Ibrahim C. Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. (2020): 43 - 53. 10.4999/uhod.203965
MLA Ghasemi Mehdi,okay mufide,Malkan Umit Yavuz,TÜRK Seyhan,Jabbar Javaid,Hocaoglu Helin,Haznedaroglu Ibrahim C. Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. , 2020, ss.43 - 53. 10.4999/uhod.203965
AMA Ghasemi M,okay m,Malkan U,TÜRK S,Jabbar J,Hocaoglu H,Haznedaroglu I Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. . 2020; 43 - 53. 10.4999/uhod.203965
Vancouver Ghasemi M,okay m,Malkan U,TÜRK S,Jabbar J,Hocaoglu H,Haznedaroglu I Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. . 2020; 43 - 53. 10.4999/uhod.203965
IEEE Ghasemi M,okay m,Malkan U,TÜRK S,Jabbar J,Hocaoglu H,Haznedaroglu I "Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells." , ss.43 - 53, 2020. 10.4999/uhod.203965
ISNAD Ghasemi, Mehdi vd. "Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells". (2020), 43-53. https://doi.org/10.4999/uhod.203965
APA Ghasemi M, okay m, Malkan U, TÜRK S, Jabbar J, Hocaoglu H, Haznedaroglu I (2020). Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. Uluslararası Hematoloji-Onkoloji Dergisi, 30(1), 43 - 53. 10.4999/uhod.203965
Chicago Ghasemi Mehdi,okay mufide,Malkan Umit Yavuz,TÜRK Seyhan,Jabbar Javaid,Hocaoglu Helin,Haznedaroglu Ibrahim C. Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. Uluslararası Hematoloji-Onkoloji Dergisi 30, no.1 (2020): 43 - 53. 10.4999/uhod.203965
MLA Ghasemi Mehdi,okay mufide,Malkan Umit Yavuz,TÜRK Seyhan,Jabbar Javaid,Hocaoglu Helin,Haznedaroglu Ibrahim C. Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. Uluslararası Hematoloji-Onkoloji Dergisi, vol.30, no.1, 2020, ss.43 - 53. 10.4999/uhod.203965
AMA Ghasemi M,okay m,Malkan U,TÜRK S,Jabbar J,Hocaoglu H,Haznedaroglu I Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. Uluslararası Hematoloji-Onkoloji Dergisi. 2020; 30(1): 43 - 53. 10.4999/uhod.203965
Vancouver Ghasemi M,okay m,Malkan U,TÜRK S,Jabbar J,Hocaoglu H,Haznedaroglu I Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells. Uluslararası Hematoloji-Onkoloji Dergisi. 2020; 30(1): 43 - 53. 10.4999/uhod.203965
IEEE Ghasemi M,okay m,Malkan U,TÜRK S,Jabbar J,Hocaoglu H,Haznedaroglu I "Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells." Uluslararası Hematoloji-Onkoloji Dergisi, 30, ss.43 - 53, 2020. 10.4999/uhod.203965
ISNAD Ghasemi, Mehdi vd. "Ankaferd Hemostat Affects Etoposide Resistance of the Malignant Melanoma Cells". Uluslararası Hematoloji-Onkoloji Dergisi 30/1 (2020), 43-53. https://doi.org/10.4999/uhod.203965