Yıl: 2020 Cilt: 26 Sayı: 1 Sayfa Aralığı: 122 - 131 Metin Dili: Türkçe İndeks Tarihi: 09-11-2020

Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar

Öz:
Amputasyon tedavisi, kısmen veya total olarak enfekte koronaldiş pulpasının çıkarılıp normal yapıdaki kök pulpasının etkili ve bakterisid bir madde ile korunmasıyla fonksiyonun sürdürülmesi işlemiolarak tanımlanmaktadır. Süt dişi amputasyon tedavisinde en yaygınolarak kullanılan materyal formokrezoldür, ancak formokrezolün içeriğindeki formaldehitten dolayı güvenirliliği konusunda şüpheler bulunmaktadır. Formokrezolün toksisitesine dair tartışmaların artması,fiksasyon sınırlarının tam olarak belirlenememesi ve geri dönüş riskinin bulunması amputasyon tedavilerinde değişik materyallerin kullanılmasını gündeme getirmiştir. Vital pulpa tedavisinde antimikrobiyaltoksik ajanları elimine etmek isteyen araştırmacılar, alternatif yöntemlere ve materyallere yönelmişlerdir. Bu çalışmada, amputasyon tedavisinde kullanılan yöntem ve materyallerin özelliklerinin ortayakonularak değerlendirilmesi amaçlanmıştır.
Anahtar Kelime:

Current Approaches to Primary Teeth Amputation Therapies

Öz:
Pulpotomy therapy is defined as the process of maintaining the function of the tooth by removing partially/completely infected coronal pulp and protecting the normal structure of the root pulp with an effective and bactericidal agent. The most commonly used material in the treatment of primary teeth pulpotomy is formocresol, but there are doubts about its reliability due to formaldehyde in the content of formocresol. The increase in the discussions about the toxicity of the formocresol, the lack of fixation limits and the risk of return have brought the use of different materials in pulpotomy therapies. Researchers who wanted to eliminate antimicrobial toxic agents in the treatment of vital pulp, directed to alternative methods and materials. The aim of this study is to evaluate the characteristics of the methods and materials used in pulpotomy therapy.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Pinkham J, Casamassimo P, Fields H, McTigue D, Nowak A. Pulp therapy for the primary dentition. Pediatric Dentistry: Infancy Through Adolescence. 2nd ed. New Delhi, India: WB Saunders Co; 2001. p.675.
  • 2. Fuks AB. Vital pulp therapy with new materials for primary teeth: new directions and treatment perspectives. Pediatr Dent. 2008;30(3):211-9. [Crossref]
  • 3. Ranly DM. Pulpotomy therapy in primary teeth: new modalities for old rationales. Pediatr Dent. 1994;16(6):403-9.
  • 4. Alaçam A. [Endodontic approaches in pedodontics]. Alaçam T editör. Endodonti. 1. Baskı. Ankara: Özyurt Matbaacılık; 2012. p.1264-6.
  • 5. Kahl J, Easton J, Johnson G, Zuk J, Wilson S, Galinkin J. Formocresol blood levels in children receiving dental treatment under general anesthesia. Pediatr Dent. 2008;30(5):393-9.
  • 6. Srinivasan V, Patchett CL, Waterhouse PJ. Is there life after Buckley's formocresol? Part I-- A narrative review of alternative interventions and materials. Int J Paediatr Dent. 2006;16(2):117-27. [Crossref] [PubMed]
  • 7. Berger JE. A review of the erroneously labeled “mummification” techniques of pulp therapy. Oral Surg Oral Med Oral Pathol. 1972;34(1): 131-44. [Crossref]
  • 8. Magnusson B. Therapeutic pulpotomy in primary molars--clinical and histological followup. II. Zinc oxide-eugenol as wound dressing. Odontol Revy. 1971;22(1):45-54.
  • 9. Hansen HP, Ravn JJ, Ulrich D. Vital pulpotomy in primary molars: a clinical and histologic investigation of the effect of zinc oxide-eugenol cement and Ledermix. Scand J Dent Res 1971;79(1):13-25. [Crossref] [PubMed]
  • 10. Hui-Derksen EK, Chen CF, Majewski R, Tootla RG, Boynton JR. Retrospective record review: reinforced zinc oxide-eugenol pulpotomy: a retrospective study. Pediatr Dent. 2013;35(1):43-6.
  • 11. Fuks AB, Eidelman E, Cleaton-Jones P, Michaeli Y. Pulp response to ferric sulfate, diluted formocresol and IRM in pulpotomized primary baboon teeth. ASDC J Dent Child. 1997;64(4):254-9.
  • 12. Doyle W, McDonald R, Mitchell D. Formocresol versus calcium hydroxide in pulpotomy. ASDC J Dent Child. 1962;29:86-97.
  • 13. Ranly DM, Garcia-Godoy F, Horn D. Time, concentration, and pH parameters for the use of glutaraldehyde as a pulpotomy agent: an in vitro study. Pediatr Dent. 1987;9(3):199-203.
  • 14. Maria S, Gama P, Cristina Marchiori É. Comparative study between formocresol and glutaraldehyde in pulpotomy-literature review. Rev Sul-bras Odontol. 2005;2:27-32.
  • 15. Garcia-Godoy F. A 42 month clinical evaluation of glutaraldehyde pulpotomies in primary teeth. J Pedod. 1986;10(2):148-55.
  • 16. Landau M, Johnsen D. Pulpal responses to ferric sulfate in monkeys. J Dent Res. 1988;67:215.
  • 17. Cotes O, Boj JR, Canalda C, Carreras M. Pulpal tissue reaction to formocresol vs. ferric sulfate in pulpotomized rat teeth. J Clin Pediatr Dent. 1997;21(3):247-53.
  • 18. Zander H. Reaction of the pulp to calcium hydroxide. J Dent Res. 1939;18(4):373-9. [Crossref]
  • 19. Percinoto C, de Castro AM, Pinto LM. Clinical and radiographic evaluation of pulpotomies employing calcium hydroxide and trioxide mineral aggregate. Gen Dent. 2006;54(4):258-61.
  • 20. Schröder U. A 2-year follow-up of primary molars, pulpotomized with a gentle technique and capped with calcium hydroxide. Scand J Dent Res. 1978;86(4):273-8. [Crossref] [PubMed]
  • 21. Markovic D, Zivojinovic V, Vucetic M. Evaluation of three pulpotomy medicaments in primary teeth. Eur J Paediatr Dent. 2005;6(3): 133-8.
  • 22. Briso AL, Rahal V, Mestrener SR, Dezan Junior E. Biological response of pulps submitted to different capping materials. Braz Oral Res. 2006;20(3):219-25. [Crossref] [PubMed]
  • 23. Schmitt D, Lee J, Bogen G. Multifaceted use of ProRoot MTA root canal repair material. Pediatr Dent. 2001;23(4):326-30.
  • 24. Jabbarifar E, Mohammad Razavi S, Ahmadi N. Histopathologic responses of dog’s dental pulp to mineral trioxide aggregate, bio active glass, formocresol, hydroxyapatite. Dent Res J. 2008;4(2):83-7.
  • 25. Hugar SM, Deshpande SD. Comparative investigation of clinical/radiographical signs of mineral trioxide aggregate and formocresol on pulpotomized primary molars. Contemp Clin Dent. 2010;1(3):146-51. [Crossref] [PubMed] [PMC]
  • 26. Godhi B, Sood PB, Sharma A. Effects of mineral trioxide aggregate and formocresol on vital pulp after pulpotomy of primary molars: an in vivo study. Contemp Clin Dent. 2011;2(4):296- 301. [Crossref] [PubMed] [PMC]
  • 27. Srinivasan D, Jayanthi M. Comparative evaluation of formocresol and mineral trioxide aggregate as pulpotomy agents in deciduous teeth. Indian J Dent Res. 2011;22(3):385-90. [Crossref] [PubMed]
  • 28. Olatosi OO, Sote EO, Orenuga OO. Effect of mineral trioxide aggregate and formocresol pulpotomy on vital primary teeth: a clinical and radiographic study. Niger J Clin Pract. 2015;18(2):292-6. [Crossref] [PubMed]
  • 29. Perea MB, Mendoza BS, Garcia-Godoy F, Mendoza AM, Iglesias-Linares A. Clinical and radiographic evaluation of white MTA versus formocresol pulpotomy: a 48-month follow-up study. Am J Dent. 2017;30(3):131-6.
  • 30. Erdem AP, Guven Y, Balli B, Ilhan B, Sepet E, Ulukapi I, et al. Success rates of mineral trioxide aggregate, ferric sulfate, and formocresol pulpotomies: a 24-month study. Pediatr Dent. 2011;33(2):165-70.
  • 31. Odabaş ME, Alaçam A, Sillelioğlu H, Deveci C. Clinical and radiographic success rates of mineral trioxide aggregate and ferric sulphate pulpotomies performed by dental students. Eur J Paediatr Dent. 2012;13(2):118-22.
  • 32. Yildiz E, Tosun G. Evaluation of formocresol, calcium hydroxide, ferric sulfate, and MTA primary molar pulpotomies. Eur J Dent. 2014;8(2):234-40. [Crossref] [PubMed] [PMC]
  • 33. Malkondu Ö, Karapinar Kazandağ M, Kazazoğlu E. A review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int. 2014;2014:160951. [Crossref] [PubMed] [PMC]
  • 34. Cuadros C, Garcia J, Sandra S, Lorente A, Montse M. Clinical and radiographic evaluation of biodentine and MTA in pulpotomies of primary molars. 12th Congress of EAPD, Sopot; 2014.
  • 35. Rajasekharan S, Martens LC, Cauwels RG, Verbeeck RM. BiodentineTM material characteristics and clinical applications: a review of the literature. Eur Arch Paediatr Dent. 2014;15(3):147-58. [Crossref] [PubMed]
  • 36. Shayegan A, Jurysta C, Atash R, Petein M, Abbeele AV. Biodentine used as a pulp-capping agent in primary pig teeth. Pediatr Dent. 2012;34(7):e202-8.
  • 37. Rubanenko M, Moskovitz M, Petel R, Fuks A. Effectiveness of Biodentine versus Formocresol as dressing agents in pulpotomized primary molars: preliminary results. 12th Congress of EAPD, Sopot; 2014.
  • 38. Rajasekharan S, Cauwels R, Vandenbulcke J, Martens L. Efficacy of 3 pulpotomy medicaments in primary molars-A Randomised Control Trial with one year follow up. 12th Congress of EAPD, Sopot; 2014.
  • 39. Çelik BN, Mutluay MS, Arıkan V, Sarı Ş. The evaluation of MTA and Biodentine as a pulpotomy materials for carious exposures in primary teeth. Clin Oral Investig. 2018;1-6. [Crossref] [PubMed]
  • 40. Carti O, Oznurhan F. Evaluation and comparison of mineral trioxide aggregate and biodentine in primary tooth pulpotomy: clinical and radiographic study. Niger J Clin Pract. 2017;20(12):1604-9.
  • 41. Caruso S, Dinoi T, Marzo G, Campanella V, Giuca MR, Gatto R, et al. Clinical and radiographic evaluation of biodentine versus calcium hydroxide in primary teeth pulpotomies: a retrospective study. BMC Oral Health. 2018;18(1):54. [Crossref] [PubMed] [PMC]
  • 42. Akimoto N, Momoi Y, Kohno A, Suzuki S, Otsuki M, Suzuki S, et al. Biocompatibility of Clearfil Liner Bond 2 and Clearfil AP-X system on nonexposed and exposed primate teeth. Quintessence Int. 1998;29(3):177-88.
  • 43. Hafez AA, Cox CF, Tarim B, Otsuki M, Akimoto N. An in vivo evaluation of hemorrhage control using sodium hypochlorite and direct capping with a one-or two-component adhesive system in exposed nonhuman primate pulps. Quintessence Int. 2002;33(4):261-72.
  • 44. Vargas KG, Packham B, Lowman D. Preliminary evaluation of sodium hypochlorite for pulpotomies in primary molars. Pediatr Dent. 2006;28(6):511-7.
  • 45. Haghgoo R, Abbasi F. A histopathological comparison of pulpotomy with sodium hypochlorite and formocresol. Iran Endod J. 2012;7(2):60-2.
  • 46. Chauhan SP, Gupta M, Ahmed H, Tongya R, Sharma D, Chugh B. Evaluation and comparison between formocresol and sodium hypochlorite as pulpotomy medicament: a randomized study. J Contemp Dent Pract. 2017;18(11):1029-33. [Crossref] [PubMed]
  • 47. Goker H, Haznedaroglu IC, Ercetin S, Kirazli S, Akman U, Ozturk Y, et al. Haemostatic actions of the folkloric medicinal plant extract Ankaferd Blood Stopper. J Int Med Res. 2008;36(1):163-70. [Crossref] [PubMed]
  • 48. Odabaş ME, Cinar C, Tulunoğlu O, Işik B. A new haemostatic agent's effect on the success of calcium hydroxide pulpotomy in primary molars. Pediatr Dent. 2011;33(7):529-34.
  • 49. Yaman E, Görken F, Pinar Erdem A, Sepet E, Aytepe Z. Effects of folk medicinal plant extract Ankaferd Blood Stopper(®) in vital primary molar pulpotomy. Eur Arch Paediatr Dent. 2012;13(4):197-202. [Crossref] [PubMed]
  • 50. Cantekin K, Gümüş H. Success rates of ankaferd blood stopper and ferric sulfate as pulpotomy agents in primary molars. Int Sch Res Notices. 2014;2014:819605. [Crossref] [PubMed] [PMC]
  • 51. Yıldırım S, Alaçam A. [The protein and gene therapies for vital pulp treatments]. Hacettepe Dishek Fak Derg. 2007;31(2):54-63.
  • 52. Nakashima M, Reddi AH. The application of bone morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003;21(9):1025- 32. [Crossref] [PubMed]
  • 53. Rutherford RB, Wahle J, Tucker M, Rueger D, Charette M. Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Arch Oral Biol. 1993;38(7):571-6. [Crossref]
  • 54. da Silva LA, de Paula e Silva FW, Leonardo MR, Assed S. Pulpal and periapical response of dogs' teeth after pulpotomy and use of recombinant human bone morphogenetic protein-7 as a capping agent. J Dent Child (Chic). 2007;74(2):79-84.
  • 55. Kumar Praveen N, Rashmi N, Bhaskar Vipin K, Mopkar Pujan P. Pulpotomy medicaments: continued search for new alternatives-a review. Oral Health Dent Manag. 2014;13(4): 883-90.
  • 56. Yıldırım S, Alaçam A, Sarıtaş ZK, Oygür T. [The histopathological research of transforming growth factor-β1 for pulpal therapies]. Acta Odontol Turc. 2001;18(3):123-32.
  • 57. Özerol NB, Yılmaz NA, Bodrumlu E. [Emdogain in dentistry]. Acta Odontol Turc. 2014;31(1):43-8. [Crossref]
  • 58. Inai T, Kukita T, Ohsaki Y, Nagata K, Kukita A, Kurisu K. Immunohistochemical demonstration of amelogenin penetration toward the dental pulp in the early stages of ameloblast development in rat molar tooth germs. Anat Rec. 1991;229(2):259-70. [Crossref] [PubMed]
  • 59. He J, Jiang J, Safavi KE, Spångberg LS, Zhu Q. Emdogain promotes osteoblast proliferation and differentiation and stimulates osteoprotegerin expression. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97(2): 239-45. [Crossref] [PubMed]
  • 60. Yamamura T. Differentiation of pulpal cells and inductive influences of various matrices with reference to pulpal wound healing. J Dent Res. 1985;64 Spec No:530-40. [Crossref] [PubMed]
  • 61. Kaida H, Hamachi T, Anan H, Maeda K. Wound healing process of injured pulp tissues with emdogain gel. J Endod. 2008;34(1):26- 30. [Crossref] [PubMed]
  • 62. Sabbarini J, Mounir M, Dean J. Histological evaluation of enamel matrix derivative as a pulpotomy agent in primary teeth. Pediatr Dent. 2007;29(6):475-9.
  • 63. Nakamura Y, Hammarström L, Lundberg E, Ekdahl H, Matsumoto K, Gestrelius S, et al. Enamel matrix derivative promotes reparative processes in the dental pulp. Adv Dent Res. 2001;15(1):105-7. [Crossref] [PubMed]
  • 64. Garrocho-Rangel A, Flores H, Silva-Herzog D, Hernandez-Sierra F, Mandeville P, PozosGuillen AJ. Efficacy of EMD versus calcium hydroxide in direct pulp capping of primary molars: a randomized controlled clinical trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(5):733-8. [Crossref] [PubMed]
  • 65. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10(4):225-8. [Crossref] [PubMed]
  • 66. Kevy SV, Jacobson MS. Comparison of methods for point of care preparation of autologous platelet gel. J Extra Corpor Technol. 2004;36(1):28-35.
  • 67. Somani R, Zaidi I, Jaidka S. Platelet rich plasma-a healing aid and perfect enhancement factor: review and case report. Int J Clin Pediatr Dent. 2011;4(1):69-75. [Crossref] [PubMed] [PMC]
  • 68. Aroca S, Keglevich T, Barbieri B, Gera I, Etienne D. Clinical evaluation of a modified coronally advanced flap alone or in combination with a platelet-rich fibrin membrane for the treatment of adjacent multiple gingival recessions: a 6-month study. J Periodontol. 2009;80(2):244-52. [Crossref] [PubMed]
  • 69. Agrawal M, Agrawal V. Platelet rich fibrin and its applications in dentistry-a review article. NJMDR. 2014;2(3):51-8.
  • 70. Keswani D, Pandey RK. Revascularization of an immature tooth with a necrotic pulp using platelet-rich fibrin: a case report. Int Endod J. 2013;46(11):1096-104. [Crossref] [PubMed]
  • 71. Hiremath H, Saikalyan S, Kulkarni SS, Hiremath V. Second-generation platelet concentrate (PRF) as a pulpotomy medicament in a permanent molar with pulpitis: a case report. Int Endod J. 2012;45(1):105-12. [Crossref] [PubMed]
  • 72. Patidar S, Kalra N, Khatri A, Tyagi R. Clinical and radiographic comparison of platelet-rich fibrin and mineral trioxide aggregate as pulpotomy agents in primary molars. J Indian Soc Pedod Prev Dent. 2017;35(4):367-73. [Crossref] [PubMed]
  • 73. Kalaskar RR, Damle SG. Comparative evaluation of lyophilized freeze dried platelet derived preparation with calcium hydroxide as pulpotomy agents in primary molars. J Indian Soc Pedod Prev Dent. 2004;22(1):24- 9.
  • 74. Rodríguez WdCG, Carpio M, Ramos M, Milanés M, Antúnez L. Pulpotomies of dead pulps in temporal molars using 10% propolis tinction. Rev Cubana Estomatol [online]. 2007;44(3).
  • 75. Lima RV, Esmeraldo MR, de Carvalho MG, de Oliveira PT, de Carvalho RA, da Silva FL, et al. Pulp repair after pulpotomy using different pulp capping agents: a comparative histologic analysis. Pediatr Dent. 2011;33(1):14-8.
  • 76. Ozório JE, Carvalho LF, de Oliveira DA, de Sousa-Neto MD, Perez DE. Standardized propolis extract and calcium hydroxide as pulpotomy agents in primary pig teeth. J Dent Child (Chic). 2012;79(2):53-8.
  • 77. Maeda T, Matsunuma A, Kawane T, Horiuchi N. Simvastatin promotes osteoblast differentiation and mineralization in MC3T3-E1 cells. Biochem Biophys Res Commun. 2001;280(3): 874-7. [Crossref] [PubMed]
  • 78. van Nieuw Amerongen GP, Vermeer MA, Nègre-Aminou P, Lankelma J, Emeis JJ, van Hinsbergh VW. Simvastatin improves disturbed endothelial barrier function. Circulation. 2000;102(23):2803-9. [Crossref] [PubMed]
  • 79. Okamoto Y, Sonoyama W, Ono M, Akiyama K, Fujisawa T, Oshima M, et al. Simvastatin induces the odontogenic differentiation of human dental pulp stem cells in vitro and in vivo. J Endod. 2009;35(3):367-72. [Crossref] [PubMed]
  • 80. Min KS, Lee YM, Hong SO, Kim EC. Simvastatin promotes odontoblastic differentiation and expression of angiogenic factors via heme oxygenase-1 in primary cultured human dental pulp cells. J Endod. 2010;36(3):447-52. [Crossref] [PubMed]
  • 81. Pettiette MT, Zhong S, Moretti AJ, Khan AA. Potential correlation between statins and pulp chamber calcification. J Endod. 2013;39(9): 1119-23. [Crossref] [PubMed]
  • 82. Jamali Z, Alavi V, Najafpour E, Aminabadi NA, Shirazi S. Randomized controlled trial of pulpotomy in primary molars using MTA and formocresol compared to 3Mixtatin: a novel biomaterial. J Clin Pediatr Dent. 2018;42(5): 361-6. [Crossref] [PubMed]
  • 83. Vivan RR, Mecca CE, Biguetti CC, Rennó AC, Okamoto R, Cavenago BC, et al. Experimental maxillary sinus augmentation using a highly bioactive glass ceramic. J Mater Sci Mater Med. 2016;27(2):41. [Crossref] [PubMed]
  • 84. Montazerian M, Dutra Zanotto E. History and trends of bioactive glass-ceramics. J Biomed Mater Res A. 2016;104(5):1231-49. [Crossref] [PubMed]
  • 85. Salako N, Joseph B, Ritwik P, Salonen J, John P, Junaid TA. Comparison of bioactive glass, mineral trioxide aggregate, ferric sulfate, and formocresol as pulpotomy agents in rat molar. Dent Traumatol. 2003;19(6):314-20. [Crossref] [PubMed]
  • 86. Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol (Roma). 2014;5(3):108-14. [Crossref]
  • 87. Shayegan A, Atash R, Petein M, Abbeele AV. Nanohydroxyapatite used as a pulpotomy and direct pulp capping agent in primary pig teeth. J Dent Child (Chic). 2010;77(2):77-83.
  • 88. Komath M, Varma HK. Fully injectable calcium phosphate cement--a promise to dentistry. Indian J Dent Res. 2004;15(3):89-95.
  • 89. Chaung HM, Hong CH, Chiang CP, Lin SK, Kuo YS, Lan WH, et al. Comparison of calcium phosphate cement mixture and pure calcium hydroxide as direct pulp-capping agents. J Formos Med Assoc. 1996;95(7): 545-50.
  • 90. Sena M, Yamashita Y, Nakano Y, Ohgaki M, Nakamura S, Yamashita K, et al. Octacalcium phosphate-based cement as a pulp-capping agent in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97(6):749-55. [Crossref] [PubMed]
  • 91. Zhang W, Walboomers XF, Jansen JA. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-beta1. J Biomed Mater Res A. 2008;85(2):439-44. [Crossref] [PubMed]
  • 92. Jose B, Ratnakumari N, Mohanty M, Varma HK, Komath M. Calcium phosphate cement as an alternative for formocresol in primary teeth pulpotomies. Indian J Dent Res. 2013;24(4): 522. [Crossref] [PubMed]
  • 93. Omar OM, Khattab NM, Khater DS. Nigella sativa oil as a pulp medicament for pulpotomized teeth: a histopathological evaluation. J Clin Pediatr Dent. 2012;36(4):335-41. [Crossref] [PubMed]
APA Kaptan A, Çukurcu Ç (2020). Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. , 122 - 131.
Chicago Kaptan Arife,Çukurcu Çiğdem Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. (2020): 122 - 131.
MLA Kaptan Arife,Çukurcu Çiğdem Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. , 2020, ss.122 - 131.
AMA Kaptan A,Çukurcu Ç Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. . 2020; 122 - 131.
Vancouver Kaptan A,Çukurcu Ç Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. . 2020; 122 - 131.
IEEE Kaptan A,Çukurcu Ç "Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar." , ss.122 - 131, 2020.
ISNAD Kaptan, Arife - Çukurcu, Çiğdem. "Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar". (2020), 122-131.
APA Kaptan A, Çukurcu Ç (2020). Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi, 26(1), 122 - 131.
Chicago Kaptan Arife,Çukurcu Çiğdem Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi 26, no.1 (2020): 122 - 131.
MLA Kaptan Arife,Çukurcu Çiğdem Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi, vol.26, no.1, 2020, ss.122 - 131.
AMA Kaptan A,Çukurcu Ç Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi. 2020; 26(1): 122 - 131.
Vancouver Kaptan A,Çukurcu Ç Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar. Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi. 2020; 26(1): 122 - 131.
IEEE Kaptan A,Çukurcu Ç "Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar." Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi, 26, ss.122 - 131, 2020.
ISNAD Kaptan, Arife - Çukurcu, Çiğdem. "Süt Dişi Amputasyon Tedavilerinde Güncel Yaklaşımlar". Türkiye Klinikleri Diş Hekimliği Bilimleri Dergisi 26/1 (2020), 122-131.