Yıl: 2018 Cilt: 33 Sayı: 2 Sayfa Aralığı: 126 - 131 Metin Dili: Türkçe DOI: 10.5222/MMJ.2018.98475 İndeks Tarihi: 15-11-2020

Geniş bant akustik immitansmetre

Öz:
Akustik immitansmetri ölçümü dış kulak kanalından verilen safsesin kulak zarından yansıdıktan sonra kaydedilmesiyle oluşur. Bukayıt sonucunda orta kulağın durumu hakkında objektif bilgilerelde edilir. Standart olarak kliniklerde geleneksel immitansmetriolarak isimlendirilen 226 Hz ve 1000 Hz prob ton uyaran verilenimmitansmetri kullanılmaktadır. Fakat bu yöntem orta kulağındurumu ile ilgili bilgi sağlamada yeterli olmamaktadır. GenişBant Timpanometri ölçümü ile (GBT), dış kulak kanalından genişbir frekans aralığını (226-8000 Hz) kapsayan klik uyaran verilerekölçüm yapılmaktadır. Bu sırada orta kulakta absorbe edilen veorta kulaktan yansıyan ses miktarı ölçülmektedir. Orta kulaktanyansıyan ses Reflektans, orta kulak tarafından soğurulan ses Absorbansolarak tanımlanır. Bu makalenin amacı, geniş bant timpanometriningeleneksel timpanometriye göre üstün yönleri vefarklılıkları açıklamaktır.
Anahtar Kelime:

Wide band acoustic immitancemetry

Öz:
Acoustic Immitancemetry comprise recording the reflected pure tone sound from the eardrum sent which was delivered from the probe at the outer ear canal. It provides objective information about the condition of the middle ear. Traditional 226 Hz and 1000 Hz probe tone tympanometries are usually used in clinics but it’s not enough to identify middle ear disorders. Wideband Tympanometry (WBT) uses click stimuli covering a broad frequency range (226 Hz-8000 Hz). WBT measures sounds that are reflected back from the middle ear and absorbed by the middle ear. The sound that is reflected back from the middle ear is called reflectance, the sound that is absorbed by the middle ear is called absorbance. It is the purpose of this study to explain the superiority of WBT and its differences from traditional tympanometry.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Musiek FE, & Baran JA. The auditory system: anatomy, physiology and clinical correlates. Allyn & Bacon. 2007.
  • 2. Hall JW. Introduction to Audiology Today. Pearson Higher Ed. 2013.
  • 3. Katz J. Basic Principles of Acoustic Immitance Measures. Handbook of Clinical Audiology, 2002;11:159-73.
  • 4. Feeney MP, Hunter LL, Kei J, Lilly DJ, Margolis RH, Nakajima HH, ... & Schairer KS. Consensus statement: Eriksholm workshop on wideband absorbance measures of the middle ear. Ear and Hearing. 2013;34:78-9. https://doi.org/10.1097/AUD.0b013e31829c726b
  • 5. Rosowski JJ, Stenfelt S, & Lilly D. An overview of wideband immittance measurements techniques and terminology: You say absorbance, I say reflectance. Ear and Hearing. 2013;34(0 1):9. https://doi.org/10.1097/AUD.0b013e31829d5a14
  • 6. Hudde H. Measurement of the eardrum impedance of human ears. Journal of the Acoustical Society of America. 1983;73:242-7. https://doi.org/10.1121/1.388855
  • 7. Keefe D, Ling R, & Bulen J. Method to measure acoustic impedance and reflection coefficient. Journal of the Acoustical Society of America, 1992;91:470-85. https://doi.org/10.1121/1.402733
  • 8. Lynch TJ, III, Peake WT, & Rosowski JJ. Measurements of the acoustic input impedance of cat ears: 10 Hz to 20 kHz. Journal of the Acoustical Society of America. 1994;96:2184-2209. https://doi.org/10.1121/1.410160
  • 9. Stinson MR, Shaw EAG, & Lawton BW. Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal. Journal of the Acoustical Society of America. 1982;72:766-773. https://doi.org/10.1121/1.388257
  • 10. Voss SE, & Allen JB. Measurement of acoustic impedance and reflectance in the human ear canal. Journal of the Acoustical Society of America. 1994;95:372-84. https://doi.org/10.1121/1.408329
  • 11. Keefe DH, Bulen JC, Arehart KH, & Burns EM. Ear-canal impedance and reflection coefficient in human infants and adults. Journal of the Acoustical Society of America. 1993;94:2617-38. https://doi.org/10.1121/1.407347
  • 12. Shaw EAG, & Stinson MR. Network concepts and energy flow in the human middle ear. Journal of the Acoustical Society of America. 1981;69(Suppl.1):43. https://doi.org/10.1121/1.386273
  • 13. Shahnaz N, & Bork K. Wideband reflectance norms for Caucasian and Chinese young adults. Ear and Hearing. 2006;27(6):774-88. https://doi.org/10.1097/01.aud.0000240568.00816.4a
  • 14. Beers A, Shahnaz N, Westerberg B, Kozak FK. Wideband reflectance (WBR) in normal Caucasian and Chinese schoolaged children and in children with otitis media with effusion (OME). Ear and Hearing. 2010;31:221-233. https://doi.org/10.1097/AUD.0b013e3181c00eae
  • 15. Feeney MP, Grant IL, & Mills DM. Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone. Ear and Hearing. 2009;30:391-400. https://doi.org/10.1097/AUD.0b013e3181a283ed
  • 16. Hunter LL, Tubaugh L, Jackson JA, & Propes S. Wideband middle ear power measurement in infants and children. Journal of the American Academy of Audiology. 2008;19:309-24. https://doi.org/10.3766/jaaa.19.4.4
  • 17. Shahnaz N, Longridge N, & Bell D. Wideband energy reflectance patterns in preoperative and post-operative otosclerotic ears. International Journal of Audiology. 2009;48:240-7. https://doi.org/10.1080/14992020802635317
  • 18. Margolis RH, & Keefe DH. Reflectance tympanometry. In: Abstracts of the Midwinter Research Meeting of the Association for Research in Otolaryngology, St. Petersburg Beach, FL. 1997.
  • 19. Keefe DH, & Levi E. Maturation of the middle and external ears: acoustic power-based responses and reflectance tympanometry. Ear and hearing. 1996;17(5):361-73. https://doi.org/10.1097/00003446-199610000-00002
  • 20. Huang GT, Rosowski JJ, & Peake WT. Relating middle ear acoustic performance to body size in the cat family: Measurements and models. Journal of Comparative Physiology. 2000;186:447-465. https://doi.org/10.1007/s003590050444
  • 21. Keefe DH, & Simmons JL. Energy transmittance predicts conductive hearing loss in older children and adults. The Journal of the Acoustical Society of America. 2003;114(6):3217-38. https://doi.org/10.1121/1.1625931
  • 22. Piskorski P, Keefe D, Simmons J, & Gorga M. Prediction of conductive hearing loss based on acoustic ear canal response using a multivariate cinical decision theory. Journal of the Acoustical Society of America. 1999;105:1749-1764. https://doi.org/10.1121/1.426713
  • 23. Liu YW, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP. et al. Wideband absorbance tympanometry using pressure sweeps: System development and results on adults with normal hearing, J Acoust Soc Am. 2008;124:3708-19. https://doi.org/10.1121/1.3001712
  • 24. Sanford CA, Keefe DH, Liu Y, Fitzpatrick DF, McCreery RW. et al. Sound conduction effects on DPOAE screening outcomes in newborn infants: Test performance of wideband acoustic transfer functions and 1-kHz tympanometry. Ear Hear. 2009;30:635-52. https://doi.org/10.1097/AUD.0b013e3181b61cdc
  • 25. Voss SE, Merchant GR, Horton NJ. Effects of middle-ear disorders on power reflectance measured in cadaveric ear canals. Ear Hear. 2012;33(2):195-208. https://doi.org/10.1097/AUD.0b013e31823235b5
  • 26. Koç C. Kulak Burun Boğaz Hastalıkları ve Baş-Boyun Cerrahisi, Ankara: Güneş Kitabevi, 2004; 52-6.
  • 27. Shanks J, & Shohet J. Tympanometry in clinical practice. Handbook of clinical audiology. 2009; 157-88.
  • 28. Torun Topçu M. Bebeklerde ve Küçük Çocuklarda Geniş Bant Timpanometri Ölçümleri İle Normatif Verilerin Sağlanması. (Yayınlanmamış Yüksek Lisans Tezi). 2016.
APA Gümüş B, TORUN TOPÇU M (2018). Geniş bant akustik immitansmetre. , 126 - 131. 10.5222/MMJ.2018.98475
Chicago Gümüş Birgül,TORUN TOPÇU Merve Geniş bant akustik immitansmetre. (2018): 126 - 131. 10.5222/MMJ.2018.98475
MLA Gümüş Birgül,TORUN TOPÇU Merve Geniş bant akustik immitansmetre. , 2018, ss.126 - 131. 10.5222/MMJ.2018.98475
AMA Gümüş B,TORUN TOPÇU M Geniş bant akustik immitansmetre. . 2018; 126 - 131. 10.5222/MMJ.2018.98475
Vancouver Gümüş B,TORUN TOPÇU M Geniş bant akustik immitansmetre. . 2018; 126 - 131. 10.5222/MMJ.2018.98475
IEEE Gümüş B,TORUN TOPÇU M "Geniş bant akustik immitansmetre." , ss.126 - 131, 2018. 10.5222/MMJ.2018.98475
ISNAD Gümüş, Birgül - TORUN TOPÇU, Merve. "Geniş bant akustik immitansmetre". (2018), 126-131. https://doi.org/10.5222/MMJ.2018.98475
APA Gümüş B, TORUN TOPÇU M (2018). Geniş bant akustik immitansmetre. Medeniyet Medical Journal, 33(2), 126 - 131. 10.5222/MMJ.2018.98475
Chicago Gümüş Birgül,TORUN TOPÇU Merve Geniş bant akustik immitansmetre. Medeniyet Medical Journal 33, no.2 (2018): 126 - 131. 10.5222/MMJ.2018.98475
MLA Gümüş Birgül,TORUN TOPÇU Merve Geniş bant akustik immitansmetre. Medeniyet Medical Journal, vol.33, no.2, 2018, ss.126 - 131. 10.5222/MMJ.2018.98475
AMA Gümüş B,TORUN TOPÇU M Geniş bant akustik immitansmetre. Medeniyet Medical Journal. 2018; 33(2): 126 - 131. 10.5222/MMJ.2018.98475
Vancouver Gümüş B,TORUN TOPÇU M Geniş bant akustik immitansmetre. Medeniyet Medical Journal. 2018; 33(2): 126 - 131. 10.5222/MMJ.2018.98475
IEEE Gümüş B,TORUN TOPÇU M "Geniş bant akustik immitansmetre." Medeniyet Medical Journal, 33, ss.126 - 131, 2018. 10.5222/MMJ.2018.98475
ISNAD Gümüş, Birgül - TORUN TOPÇU, Merve. "Geniş bant akustik immitansmetre". Medeniyet Medical Journal 33/2 (2018), 126-131. https://doi.org/10.5222/MMJ.2018.98475