Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri

Yıl: 2020 Cilt: 45 Sayı: 202 Sayfa Aralığı: 93 - 111 Metin Dili: Türkçe DOI: 10.15390/EB.2020.7386 İndeks Tarihi: 15-11-2020

Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri

Öz:
Bu çalışmanın amacı problem çözme becerisinin bileşenleri (dörtadet yöntemsel bileşen ve modelleme yeterliliği) arasındakiilişkilerin ve öğretim stratejilerinin (işbirlikçi öğrenme ve problemkurma) öğrencilerin matematiksel modelleme yeterliliğiüzerindeki etkisini araştırmaktır. Kore’de 1224 öğrencininkatılımıyla öğrencilerin matematiksel problem çözme yeterliliğineilişkin 40 maddeden oluşan bir anket gerçekleştirilmiş olup anketeverilen yanıtlar nicel yöntemler kullanılarak analiz edilmiştir(açımlayıcı faktör analizi, doğrulayıcı faktör analizi ve yol analizi).Anket sonuçları, öğrencilerin matematiksel problem çözmeninyöntemsel bileşenlerine ilişkin yeterliliklerinin matematikselmodelleme yeterlilikleri üzerinde olumlu etkisi olduğunu ortayakoymuştur. Ayrıca işbirlikçi öğrenme ve problem kurmayöntemlerinin kullanıldığı öğretim stratejileri, matematikselproblem çözmenin yöntemsel bileşenleri ile matematikselmodelleme yeterliliği açısından bir etki meydana getirmiş olup buanlamda sinerji yaratmıştır. Çalışmada aynı zamanda matematikeğitimcileri ve öğretmenlerine yönelik katkı ve öneriler detartışılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Albaladejo, I. M. R., Garcia, M. D. M. ve Codina, A. (2015). Developing mathematical competencies in secondary students by introducing dynamic geometry system in the classroom. Education and Science, 40(177), 43-58.
  • Anderson, J. R., Lee, H. S. ve Fincham, J. M. (2014). Discovering the structure of mathematical problem solving. NeuroImage, 97, 163-177.
  • Arah, O. A. (2008). The role of causal reasoning in understanding Simpson's paradox, Lord's paradox, and the suppression effect: Covariate selection in the analysis of observational studies. Emerging Themes in Epidemiology, 5(1), 1.
  • Baroody, A. J. ve Coslick, R. T. (1998). Fostering children's mathematical power: An investigative approach to K-8 mathematics instruction. Mahwah. NJ: Lawrence Erlbaum Associates.
  • Bicer, A., Capraro, R. M. ve Capraro, M. M. (2013). Integrating writing into mathematics classroom to increase students’ problem solving skills. International Online Journal of Educational Sciences, 5(2), 361-369.
  • Bliss, K. M., Fowler, K. R. ve Galluzo, B. J. (2014). Math modeling: Getting started & getting solutions. Philadelphia, PA: SIAM.
  • Blum, W. ve Ferri, R. B. (2016). Advancing the teaching of mathematical modelling: Research-based concepts and examples. C. R. Hirsch ve A. R. McDuffie (Ed.), Mathematical modelling and modelling mathematics içinde (s. 65-76). VA: The National Council of Teachers of Mathematics, Inc.
  • Blum, W. ve Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects-State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37-68.
  • Brown, S. I. ve Walter, M. I. (1983). The art of problem posing. ABD: The Franklin Institute Press.
  • Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York, NY: Guilford.
  • Bruder, R. (2000). Problem-solving in mathematics lessons e a proposition for everybody?. Mathematische Unterrichtspraxis, 22, 2-11.
  • Callejo, M. L. ve Vila, A. (2009). Approach to mathematical problem solving and students’ belief systems: Two case studies. Educational Studies in Mathematics, 72(1), 111-126.
  • Capraro, M. M., Capraro, R. M., Yetkiner, Z. E., Rangel-Chavez, A. F. ve Lewis, C. W. (2010). Examining Hispanic student mathematics performance on high-stakes tests: An examination of one urban school district in Colorado. Urban Review, 42, 193-209.
  • Capraro, R. M., Capraro, M. M. ve Morgan, J. R. (Ed.). (2013). STEM project-based learning: An integrated science, technology, engineering, and mathematics (STEM) approach. Rotterdam, Netherlands: Sense.
  • Cho, H. ve Kim, D. (2013). The relationship between cooperation learning in mathematics and their attitudes towards mathematics. Korean Comparative Education Society, 23(4), 131-154.
  • Cirillo, M., Pelesko, J. A. ve Felton-Koestler, M. D. (2016). Perspectives on modeling in school mathematics. C. Hirsch ve A. R. McDuffie (Ed.), Annual perspectives in mathematics education 2016: Mathematical modeling and modeling mathematics içinde (s. 3-16). Reston, VA: NCTM.
  • Common Core State Standards Initiative. (2014). Common core state standards for mathematics. http://www.corestandards.org/math adresinden erişildi.
  • Cranshaw, J. ve Kittur, A. (2011, May). The polymath project: Lessons from a successful online collaboration in mathematics. Proceedings of the SIGCHI conference on human factors in computing systems içinde (s. 1865-1874). ACM.
  • Crespo, S. ve Sinclair, N. (2008). What makes problem mathematically interesting? Inviting prospective teachers to pose better problems. Journal of Mathematics Teacher Education, 11, 395-415.
  • doi:10.1007/s10857-008-9081-0Devellis, R. F. (2003). Scale development: Theory and applications (2. bs.). Thousand Oaks CA: Sage Publications.
  • DiDonato, N. C. (2013). Effective self-and co-regulation in collaborative learning groups: An analysis of how students regulate problem solving of authentic interdisciplinary tasks. Instructional Science, 41(1), 25-47.
  • Dossey, J. A., McCrone, S., Giordano, F. R. ve Weir, M. D. (2002). Mathematics methods and modeling for today’s classrooms: A contemporary approach to teaching grades 7-12. Pacific Grove, Calif: Brooks/Cole.
  • Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5), i-113. Elliott, B., Oty, K., McArthur, J. ve Clark, B. (2001). The effect of an interdisciplinary algebra/science course on students’ problem solving skills, critical thinking skills and attitudes towards mathematics. International Journal of Mathematical Education in Science and Technology, 32(6), 811-816.
  • English, L. D. (1997). The development of fifth-grade children’s problem posing abilities. Educational Studies in Mathematics, 34, 183-217. doi:10.1023/A:1002963618035
  • Etikan, I., Musa, S. A. ve Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1-4.
  • Fischer, A., Greiff, S., Wüstenberg, S., Fleischer, J., Buchwald, F. ve Funke, J. (2015). Assessing analytic and interactive aspects of problem solving competency. Learning and Individual Differences, 39, 172- 179.
  • George, D. ve Mallery, P. (2010). SPSS for Windows step by step: A simple guide and reference. 17.0 update (10. bs.). Boston: Pearson.
  • Han, S., Cetin, S. C., & Matteson, S. M. (2016). Examining the pattern of middle grade mathematics teachers’ performance: A concurrent embedded mixed methods study. Eurasia Journal of Mathematics, Science, & Technology Education, 12(3), 387-409.
  • Kajamies, A., Vauras, M. ve Kinnunen, R. (2010). Instructing low-achievers in mathematical word problem solving. Scandinavian Journal of Educational Research, 54(4), 335-355.
  • Kaldi, S., Filippatou, D. ve Govaris, C. (2011). Project-based learning in primary schools: Effects on pupils' learning and attitudes. Education 3-13, 39(1), 35-47.
  • Kilpatrick, J. (1987). Problem formulating: Where do good problem come from?. A. Schoenfeld (Ed.), Mathematical problem solving içinde (s. 123-148). New York: Academic Press.
  • Kilpatrick, J. (2009). A retrospective account of the past 25 years of research on teaching mathematical problem solving. E. A. Silver (Ed.) Teaching and learning mathematical problem solving: Multiple research perspective içinde (s. 1-15). NY: Lawrence Erlbaum Associates, Inc.
  • Kim, I. K. (2012). Comparison and analysis among mathematical modeling, mathematization, and problem solving. The Korean Journal for History of Mathematics, 25(2), 71-95.
  • Kim, M., Park, E., Choi, H. ve Kim, K. (2011). Developing a computer-based problem solving assessment model. Seoul: Korea Institute for Curriculum and Evaluation.
  • Kintsch, W. ve Greeno, J. G. (1985). Understanding and solving word arithmetic problems. Psychological Review, 92, 109-129.
  • Kloosterman, P. ve Stage, F. K. (1992). Measuring beliefs about mathematical problem solving. School Science and Mathematics, 92(3), 109-115.
  • Larmer, J., Ross, D. ve Mergendoller, J. R. (2009). PBL starter kit. Novato, CA: Buck Institute for Education.
  • Lavy, I. ve Bershadsky, I. (2003). Problem posing via “what if not?” strategy in solid geometry-a case study. Journal of Mathematical Behavior, 22, 369-387.
  • Lee, S. (2013). A study for developing standards and achievement levels of creativity intelligence competence.
  • Gyeonggido: Gyeonggido Office of Education.Lee, S., Chang, Y., Lee, H. ve Park, K. (2003). A study on the development of life-skills: Communication, problem solving, and self-directed learning. Seoul: Korea Educational Development Institute.
  • Lesh, R. ve Zawojewski, J. (2007). Problem solving and modeling. F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A project of the national council of teachers of mathematics içinde (s. 763-803). VA: The National Council of Teachers of Mathematics, Inc.
  • Lester, F. K. (2013). Thoughts about research on mathematical problem solving instruction. The Mathematics Enthusiast, 10(1&2), 245-278.
  • Little, T. D., Cunningham, W. A., Shahar, G. ve Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9, 151-173.
  • Lou, S. J., Liu, Y. H., Shih, R. C., Chuang, S. Y. ve Tseng, K. H. (2011). Effectiveness of on-line STEM project-based learning for female senior high school students. International Journal of Engineering Education, 27(2), 399-410.
  • Lowrie, T. (2002). Young children posing problems: The influence of teacher intervention on the type of problems children pose. Mathematics Education Research Journal, 14, 87-98. doi:10.1007/BF03217355
  • Marsh, H. W., Hau, K., Artelt, C., Baumert, J. ve Peschar, J. L. (2006). OECD's brief self-report measure of educational psychology's most useful affective constructs: Cross-cultural, psychometric comparisons across 25 countries. International Journal of Testing, 6(4), 311-360. doi:10.1207/s15327574ijt0604_1
  • McDonald, R. A., Behson, S. J. ve Seifert, C. F. (2005). Strategies for dealing with measurement error in multiple regression. Journal of Academy of Business and Economics, 5(3), 80-97.
  • Muthén, L. K. ve Muthén, B. O. (1998-2012). Mplus user’s guide (7. bs.). Los Angeles, CA: Muthén & Muthén.
  • Na, C. (2001). The effects of mathematical problem posing activities on problem solving ability and learning attitude. Seoul National University of Education, Seoul.
  • National Council of Teachers of Mathematics. (1980). An agenda for action: Recommendations for school mathematics of the 1980s. Reston, Virginia: NCTM.
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: NCTM.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston: NCTM.
  • OECD. (2006). Assessing scientific, reading, and mathematical literacy: A framework for PISA 2006. Paris: OECD Publishing.
  • OECD. (2009). PISA 2009 Assessment framework: Key competencies in reading, mathematics and science. Paris: OECD Publishing.
  • OECD. (2014). PISA 2012 Results: Creative problem solving: Students’ skills in tackling real-life problems (Volume, V). Paris: OECD Publishing.
  • Park, S., Jang, J. Y., Chen, Y. C. ve Jung, J. (2011). Is pedagogical content knowledge (PCK) necessary for reformed science teaching?: Evidence from an empirical study. Research in Science Education, 41(2), 245-260.
  • Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96-146.
  • Pollak, H. O. (2003). A history of the teaching of modeling. G. M. A. Stainc ve J. Kilpatrick (Ed.), A history of school mathematics içinde (s. 647-669). Reston, VA: National Council of Teachers of Mathematics.
  • Pollak, H. O. (2012). Introduction -what is mathematical modeling?. H. Gould, D. R. Murray ve A. Sanfratello (Ed.), Mathematical modeling handbook içinde (s. viii-xi). Bedford, MA: The Consortium for Mathematics and Its Applications. http://www.comap.com adresinden erişildi.
  • Pólya, G. (1957). How to solve it (2. bs.). New York: Doubleday.Pólya, G. (1980). On solving mathematical problems in high school. S. Krulik (Ed.), Problem solving in school mathematics içinde (s. 1-2). Reston, Virginia: NCTM.
  • Pólya, G. ve Szegö, G. (1978). Problems and theorems in analysis I: Series, integral calculus, theory of functios. Springer-Verlag: New York.
  • Rychen, D. ve Salganik, L. (2003). Key competencies for a successful life and a well-functioning society. Germany: Hogrefe & Huber.
  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orland: Academic Press, Inc.
  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. D. Grows (Ed.), Handbook for research on mathematics teaching and learning içinde (s. 334-370). New York: Macmillan.
  • Schukajlow, S., Kolter, J. ve Blum, W. (2015). Scaffolding mathematics modelling with a solution plan. ZDM Mathematics Education, 27, 1241-1254.
  • Serin, O. (2011). The effects of the computer-based instruction on the achievement and problem solving skills of the science and technology students. The Turkish Online Journal of Educational Technology, 10(1), 183-201.
  • Shute, V. J., Wang, L., Greiff, S., Zhao, W. ve Moore, G. (2016). Measuring problem solving skills via stealth assessment in an engaging video game. Computers in Human Behavior, 63, 106-117.
  • Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.
  • Sivunen, M. ve Pehkonen, E. (2009). Finnish elementary teachers’ conceptions on problem solving in mathematics education. J. Maass ve W. Schloglmann (Ed.), Beliefs and attitudes in mathematics education içinde (s. 75-86). Hollanda: Sense Publishers.
  • Son, I. (2007). Development and application of inventory for core leadership competencies of R.O.K navy petty officers (Yayımlanmamış doktora tezi). Kyungnam Üniversitesi, Changwon.
  • Stanic, G. A. ve Kilpatrick, J. (1988). Historical perspectives on problem solving in the mathematics curriculum. R. I. Charles ve E. A. Silver (Ed.), The teaching and assessing of mathematical problem solving içinde (s. 1-22). Reston, VA: National Council of Teachers of Mathematics.
  • Tausczik, Y. R., Kittur, A. ve Kraut, R. E. (2014, February). Collaborative problem solving: A study of mathoverflow. Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing içinde (s. 355-367). ACM.
  • Thornton, G. C. ve Rupp, D. E. (2006). Assessment centers in human resource management. New Jersey: Lawrence Erlbaum.
  • Tiwari, A., Lai, P., So, M. ve Yuen, K. (2006). A comparison of the effects of problem‐based learning and lecturing on the development of students' critical thinking. Medical Education, 40(6), 547-554.
  • Van Rooij, S. W. (2009). Scaffolding project-based learning with the project management body of knowledge (PMBOK®). Computers & Education, 52(1), 210-219.
  • Wiliam, D., Lee, C., Harrison, C. ve Black, P. (2004). Teachers developing assessment for learning: Impact on student achievement. Assessment in Education: Principles, Policy & Practice, 11(1), 49-65.
  • Wilson, J. W., Fernandez, M. L. ve Hadaway, N. (1993). Mathematical problem solving. P. S. Wilson ve S. Wagner (Ed.), Research ideas for the classroom: High school mathematics içinde (s. 57-78). Londra: Macmillan.
  • Wirth, J. ve Klieme, E. (2003). Computer-based assessment of problem solving competence. Assessment in Education: Principles, Policy & Practice, 10, 329-345.
  • Yuan, X. ve Sriraman, B. (2011). An exploratory study of relationships between students’ creativity and mathematical problem posing abilities. B. Sriraman ve K. H. Lee (Ed.), The elements of creativity and giftedness in mathematics içinde (s. 5-28). Rotterdam, The Netherlands: Sense. doi:10.1007/978-94- 6091-439-3_2
APA Han S, Kim H (2020). Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. , 93 - 111. 10.15390/EB.2020.7386
Chicago Han Sunyoung,Kim Hye Mi Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. (2020): 93 - 111. 10.15390/EB.2020.7386
MLA Han Sunyoung,Kim Hye Mi Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. , 2020, ss.93 - 111. 10.15390/EB.2020.7386
AMA Han S,Kim H Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. . 2020; 93 - 111. 10.15390/EB.2020.7386
Vancouver Han S,Kim H Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. . 2020; 93 - 111. 10.15390/EB.2020.7386
IEEE Han S,Kim H "Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri." , ss.93 - 111, 2020. 10.15390/EB.2020.7386
ISNAD Han, Sunyoung - Kim, Hye Mi. "Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri". (2020), 93-111. https://doi.org/10.15390/EB.2020.7386
APA Han S, Kim H (2020). Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. Eğitim ve Bilim, 45(202), 93 - 111. 10.15390/EB.2020.7386
Chicago Han Sunyoung,Kim Hye Mi Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. Eğitim ve Bilim 45, no.202 (2020): 93 - 111. 10.15390/EB.2020.7386
MLA Han Sunyoung,Kim Hye Mi Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. Eğitim ve Bilim, vol.45, no.202, 2020, ss.93 - 111. 10.15390/EB.2020.7386
AMA Han S,Kim H Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. Eğitim ve Bilim. 2020; 45(202): 93 - 111. 10.15390/EB.2020.7386
Vancouver Han S,Kim H Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri. Eğitim ve Bilim. 2020; 45(202): 93 - 111. 10.15390/EB.2020.7386
IEEE Han S,Kim H "Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri." Eğitim ve Bilim, 45, ss.93 - 111, 2020. 10.15390/EB.2020.7386
ISNAD Han, Sunyoung - Kim, Hye Mi. "Matematiksel Problem Çözme Yeterliliğinin Bileşenleri ve Matematiksel Modellemeye İlişkin Öğretim Stratejilerinin Aracılık Etkileri". Eğitim ve Bilim 45/202 (2020), 93-111. https://doi.org/10.15390/EB.2020.7386