Yıl: 2019 Cilt: 61 Sayı: 2 Sayfa Aralığı: 150 - 160 Metin Dili: İngilizce DOI: 10.33769/aupse.532422 İndeks Tarihi: 16-11-2020

MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS

Öz:
The magnetocaloric effect in Ni50-xCuxMn38Sn12B3 ribbonsdepending on the Cu substitution (x= 0, 1, 3) was investigated around the Curietemperature. The purpose of the present study was to analyze the magnetocaloriceffect around a second order phase transition (around the Curie temperature) whichhas a smaller thermal hysteresis compared to a first order phase transition(Martensitic transition). The Curie temperature of the ribbons shifted to highertemperatures with increasing Cu content. A conventional magnetocaloric effect(MCE) was observed around the Curie temperature when the ribbons are subjectedto a magnetic field change of 5 T. The magnetic entropy changes were calculatedbased on the isothermal magnetization M(H) data using thermodynamic Maxwellequation. The highest magnetic entropy change and the refrigerant capacity wasobtained for the x=1 ribbon.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Aydogdu, Y. , Turabi, A.S., Aydogdu, A., Kok, M., Yakinci, Z. D., Karaca, H. E.: The effects of boron addition on the magnetic and mechanical properties of NiMnSn shape memory alloys, J. Therm. Anal. Calorim. 126, (2016), 399–406.
  • [2] Zhang, B., Zhang, X., Yu, S. , Chen, J., Cao, Z. , Wu, G.: Giant magneto thermal conductivity in the Ni–Mn–In ferromagnetic shape memory alloys, Appl. Phys. Lett. 91, (2007), 012510.
  • [3] Castillo-Villa, P.O., Mañosa, L., Planes, A., Soto-Parra, D.E., Sánchez-Llamazares, J.L., Flores-Zúñiga, H., and Frontera, C.: Elastocaloric and magnetocaloric effects in Ni-Mn-Sn (Cu) shape-memory alloy, J. Appl. Phys. 113, (2013), 053506.
  • [4] Pramanick, S., Chatterjee, S., Giri, S., Majumdar, S., Koledov, V. V., Mashirov, A., Aliev, A. M., Batdalov, A. B., Hernando, B., Rosa, W. O., and Gonzlez-Legarreta, L.: Multiple magneto-functional properties of Ni46Mn41In13 shape memory Alloy, J. Alloys Compd. 578, (2013), 157161.
  • [5] Samanta, T., Saleheen, A. U., Lepkowski, D. L., Shankar, A., Dubenko, I., Quetz, A., Khan, M., Ali, N. and Stadler, S.: Asymmetric switchinglike behavior in the magnetoresistance at low fields in bulk metamagnetic Heusler alloys, Phys. Rev. B. 90, (2014), 064412.
  • [6] Yu, S. Y., Liu, Z. H., Liu, G. D., Chen, J. L., Cao, Z. X., Wu, G. H., Zhang, B., and Zhang, X.: Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys, x= (14– 16) upon martensitic transformation, Appl. Phys. Lett. 89, (2006), 162503.
  • [7] Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K. and Oikawa, K.: Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys, Appl. Phys. Lett. 85, (2004), 4358.
  • [8] Krenke, T., Acet, M., Wassermann, E. F., Moya, X., Manosa, L., and Planes, A.: Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In Alloys, Phys. Rev. B. 73, (2006), 174413.
  • [9] Manosa, L., Alonso, D. G., Planes, A., Bonnot, E., Barrio, M., Tamarit, J. L., Aksoy, S. and Acet, M.: Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shapememory alloy, Nat. Mat. 9, (2010), 478–481.
  • [10] Kirat G, Kizilaslan O, Aksan M. A.: Magnetoresistance properties of magnetic Ni-MnSn-B shape memory ribbons and magnetic field sensor aspects operating at room temperature. J. Magn. Magn. Mater. 477, (2019), 366-371.
  • [11] Chattopadhyay, M. K., Manekar, M. A., Sharma, V. K., Arora, P., Tiwari, P., Tiwari, M. K. and Roy, S. B.: Contrasting magnetic behavior of Ni50Mn35In15 and Ni50Mn34.5In15.5 Alloys, J. Appl. Phys. 108, (2010), 073909.
  • [12] Chen, F., Liu, W.L., Shi, Y.G., Müllner, P.: Influence of annealing on martensitic transformation and magnetic entropy change in Ni37.7Co12.7Mn40.8Sn8.8 magnetic shape memory alloy ribbon, J. Magn. Magn. Mater. 377, (2015), 137–44.
  • [13] Huang, L., Cong, D. Y., Suo, H. L. and Wang, Y. D.: Giant magnetic refrigeration capacity near room temperature in Ni40Co10Mn40Sn10 multifunctional alloy. Appl. Phys. Lett. 104, (2014),132407.
  • [14] Gschneidner K. A., and Pecharsky, V. K.: Magnetocaloric Materials, Annual Rev. Mater. Sci. 30, (2000), 387–429.
  • [15] Khattak, K. S., Aslani, A., Nwokoye, C. A., Siddique, A., Bennett, L. H., and Torre, E. D.: Magnetocaloric properties of metallic nanostructures, Cogent Engineering 2, (2015), 1050324.
  • [16] Liu, J., Scheerbaum, N., Lyubina, J. and Gutfleisch, O.: Reversibility of magnetostructural transition and associated magnetocaloric effect in Ni-Mn-In-Co., Appl. Phys. Lett. 93, (2008), 102512.
  • [17] Zhang, Y. et al.: Large magnetic entropy change and enhanced mechanical properties of Ni-Mn-Sn-C alloys., Scripta Mater. 75, (2014), 26–29.
  • [18] Tan, C., Tai, Z., Zhang, K., Tian, X. and Cai, W.: Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping., Sci. Rep. 7, (2017), 43387.
  • [19] Tan, C. L., Feng Z. C., Zhang, K., Wu, M. Y., Tian, Guo E. J.: Microstructure, martensitic transformation and mechanical properties of Ni-Mn-Sn alloys by substituting Fe for Ni, Trans. Nonferrous Met. Soc. China. 27, (2017), 2234–2238.
  • [20] Zhang, H. H., Zhang, X., Qian, M., Wei, L., Xing, D., Sun, J., Geng, L.: Enhanced magnetocaloric effects of Ni-Fe-Mn-Sn alloys involving strong metamagnetic behavior. J. Alloy. Compd. 715, (2017), 206–213.
  • [21] Qu, Y.H., Cong, D.Y., Sun X.M., Nie Z.H., Gui, W.Y., Li R.G., Ren Y., Wang, Y.D..: Giant and reversible room-temperature magnetocaloric effect in Ti-doped Ni-Co-MnSn magnetic shape memory alloys. Acta Mater. 134, (2017), 236–248.
  • [22] Cong, D. Y., Huang, L., Hardy, V., Bourgault, D., Sun, X. M., Nie, Z.H., Wang, M.G., Ren, Y., Entel, P., Wang, Y. D.: Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy. Acta Mater. 146, (2018), 142–151.
  • [23] Liu, C., Li, Z., Zhang, Y., Liu, Y., Sun., J., Huang., Y., Kang, B., Xu, K., Deng, D., Jing, D.: Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn48−xCuxNi42Sn10 Heusler alloys. Phys. Rev. B Condens. Matter. 508, (2017), 118–123.
  • [24] Kizilaslan, O., Thermal hysteresis dependent magnetocaloric effect properties of Ni50- xCuxMn38Sn12B3 shape memory ribbons, Intermetallics 109, (2019), 135–138.
  • [25] B.K.Banerjee, On a generalised approach to first and second order magnetic transitions, Phys. Lett. 12, (1964),16.
  • [26] Tian, F. Zeng, Y, Xu, M., Yang, S., Lu, T, Wang, J., Chang, T, Adil, M., Zhang, Y, Zhou, C. and Song, X.: A magnetocaloric effect arising from a ferromagnetic transition in the martensitic state in Heusler alloy of Ni50Mn36Sb8Ga6, Appl. Phys. Lett. 107, 012406 (2015).
  • [27] Zhang, X., Zhang, H., Qian, M. and Geng, L.: Enhanced magnetocaloric effect in NiMn-Sn-Co alloys with two successive magnetostructural transformations Sci. Rep. 8, (2018), 8235.
  • [28] Hernando, B., Sanchez Llamazares, J.L., Santos, J.D., Sanchez, M.L., Escoda, Ll., Sunol, J.J., Varga, R., Garcia, C., Gonzalez, J.: Grain oriented NiMnSn and NiMnIn Heusler alloys ribbons produced by melt spinning: Martensitic transformation and magnetic properties, J. Magn. Magn. Mater. 321, (2009), 763–768.
  • [29] Luo, H., Meng, F., Jiang, Q., Liu, H., Liu, E., Wu G. and Wang, Y.: Effect of boron on the martensitic transformation and magnetic properties of Ni50Mn36.5Sb13.5-xBx alloys, Scripta Mater. 63 (2010), 569–572.
  • [30] Kübler, J., William, A. R., and Sommers, C. B.: Formation and coupling of magnetic moments in Heusler alloys, Phys. Rev. B. 28, (1983), 1745.
  • [31] Pecharsky, V. K. Gschncidner K. A. Jr.: Giant Magnetocaloric Effect in Gd5(Si2Ge2), Phys. Rev. Lett. 78, (1997) 4494.
  • [32] Khan, M., Ali, N., Stadler, S.: Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13−x Heusler alloys J. Appl. Phys. 101 (2007), 053919.
  • [33] Varzaneh, A. G., Kameli, P., Amiri, T., Ramachandran, K.K., Mar, A., Sarsari, I. A., Luo, J. L., Etsell, T. H., Salamati, H.: Effect of Cu substitution on magnetocaloric and critical behavior in Ni47Mn40Sn13-xCux alloys, J. Alloy. Compd., 708, (2017) 34-42.
  • [34] Zhang, Y., Zheng, Q., Xia, W., Zhang, J., Dua, J., and Yana, A.: Enhanced large magnetic entropy change and adiabatic temperature change of Ni43Mn46Sn11 alloys by a rapid solidification method, Scripta Mater. 104, (2015) 41–44.
APA kizilaslan o (2019). MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. , 150 - 160. 10.33769/aupse.532422
Chicago kizilaslan olcay MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. (2019): 150 - 160. 10.33769/aupse.532422
MLA kizilaslan olcay MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. , 2019, ss.150 - 160. 10.33769/aupse.532422
AMA kizilaslan o MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. . 2019; 150 - 160. 10.33769/aupse.532422
Vancouver kizilaslan o MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. . 2019; 150 - 160. 10.33769/aupse.532422
IEEE kizilaslan o "MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS." , ss.150 - 160, 2019. 10.33769/aupse.532422
ISNAD kizilaslan, olcay. "MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS". (2019), 150-160. https://doi.org/10.33769/aupse.532422
APA kizilaslan o (2019). MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering, 61(2), 150 - 160. 10.33769/aupse.532422
Chicago kizilaslan olcay MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering 61, no.2 (2019): 150 - 160. 10.33769/aupse.532422
MLA kizilaslan olcay MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering, vol.61, no.2, 2019, ss.150 - 160. 10.33769/aupse.532422
AMA kizilaslan o MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering. 2019; 61(2): 150 - 160. 10.33769/aupse.532422
Vancouver kizilaslan o MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS. Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering. 2019; 61(2): 150 - 160. 10.33769/aupse.532422
IEEE kizilaslan o "MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS." Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering, 61, ss.150 - 160, 2019. 10.33769/aupse.532422
ISNAD kizilaslan, olcay. "MAGNETOCALORIC EFFECT AROUND CURIE TEMPERATURE IN Ni50-x CuxMn38Sn12B3 SHAPE MEMORY RIBBONS". Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering 61/2 (2019), 150-160. https://doi.org/10.33769/aupse.532422