Yıl: 2020 Cilt: 30 Sayı: 2 Sayfa Aralığı: 113 - 120 Metin Dili: İngilizce DOI: 10.4999/uhod.204171 İndeks Tarihi: 19-11-2020

Local Bone Marrow Renin-Angiotensin System and COVID-19

Öz:
For the first time on December 31, 2019, 27 cases of pneumonia of unknown etiology were detected in Wuhan City, Hubei province,China. The factor that caused this clinic was called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In the following days, WHO officially named the disease caused by the new coronavirus as Coronavirus Disease 2019 (COVID-19). Patientsinfected with SARS-CoV-2 mostly applied to health centers with symptoms of dry cough, shortness of breath and fever. some patientshave developed death-causing complications such as organ failure, septic shock, pulmonary edema, severe pneumonia, and AcuteRespiratory Distress Syndrome (ARDS). SARS-CoV-2 infects patients by binding human Angiotensin Converting Enzyme 2 (ACE 2),causing to severe pneumonia and high mortality. Circulating RAS and local paracrin-autocrin-intracrin tissue-based RAS participatein numerous pathobiological events. Pro-inflammatory, pro-fibrotic, and pro-thrombotic consequences associated with local RASactivation have been detected at cellular and molecular level. Regenerative progenitor cell therapy in response to RAS-modulatingpharmacotherapy in context of endothelial cell damage and regeneration emerged as an auxiliary therapy to improve regeneration ofthe vascular endothelium. The aim of this article is to evaluate the relationship between circulating and local angiotensin systems andCOVID-19
Anahtar Kelime:

Lokal Kemik İliği Renin Anjiotensin Sistem ve COVID-19

Öz:
İlk kez 31 Aralık 2019’da , Çin’in Hubei eyaleti, Wuhan şehrinde etyolojisi bilinmeyen 27 pnömoni vakası tespit edildi. Bu kliniğe neden olan ajana Şiddetli Akut Solunum Yolu Sendromu Coronavirus 2 (SARS-CoV-2) adı verildi. Sonraki günlerde DSÖ, yeni koronavirüsün neden olduğu hastalığı Coronavirus Hastalığı 2019 (COVID-19) olarak adlandırdı. SARS-CoV-2 ile enfekte hastalar çoğunlukla kuru öksürük, nefes darlığı ve ateş semptomları olan sağlık merkezlerine başvurdu. Bazı hastalarda organ yetmezliği, septik şok, pulmoner ödem, şiddetli pnömoni ve Akut Solunum Sıkıntısı Sendromu (ARDS) gibi ölüme neden olan komplikasyonlar geliştiği gözlendi. SARS-CoV-2, hastaları insan Anjiyotensin Dönüştürücü Enzim 2’yi (ACE 2) bağlayarak enfekte ederek ciddi pnömoniye ve yüksek mortaliteye neden olur. Dolaşımdaki RAS ve lokal parakrin-otokrin-intrakrin doku kaynaklı RAS birçok patobiyolojik olaya katılır. Lokal RAS aktivasyonu ile ilişkili pro-enflamatuar, pro-fibrotik ve pro-trombotik sonuçlar hücresel ve moleküler düzeyde tespit edilmiştir. Endotelyal hücre hasarı ve rejenerasyonu bağlamında RAS modüle edici farmakoterapiye yanıt olarak rejeneratif progenitör hücre tedavisi, vasküler endotelin rejenerasyonunu iyileştirmek için yardımcı bir tedavi olarak ortaya çıkmıştır. Bu makalenin amacı, dolaşımdaki ve lokal anjiyotensin sistemleri ile COVID 19 arasındaki ilişkiyi değerlendirmektir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan China: the mystery and the miracle. J Med Virol 92: 401-402, 2020.
  • 2. Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int J Surg 76: 71-76, 2020.
  • 3. Organization WH. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. https:// www.who.int/dg/speeches/detail/who-director-general-sremarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020.
  • 4. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395: 507-513, 2020.
  • 5. Sun M, Yang J, Sun Y, et al. Inhibitors of RAS might be a good choice for the therapy of COVID-19 pneumonia. DERGI ADI: Zhonghua Jie He He Hu Xi Za Zhi 43: E014, 2020.
  • 6. Xudong X, Junzhu C, Xingxiang W, et al. Age-and genderrelated difference of ACE2 expression in rat lung. Life Sci 78: 2166-2171, 2006.
  • 7. Haznedaroglu IC, Beyazit Y. Pathobiological aspects of the local bone marrow renin-angiotensin system: a review. J Renin Angiotensin Aldosterone Syst 11: 205-213, 2010.
  • 8. Haznedaroglu IC, Öztürk MA. Towards the understanding of the local hematopoietic bone marrow renin-angiotensin system. Int J Biochem Cell Biol 35: 867-880, 2003.
  • 9. Durik M, Sevá Pessôa B, Roks AJJCS. The renin–angiotensin system, bone marrow and progenitor cells. Clin Sci 123: 205- 223, 2012.
  • 10. Heringer-Walther S, Eckert K, Schumacher S-M, et al. Angiotensin-(1-7) stimulates hematopoietic progenitor cells in vitro and in vivo. Haematologica 94: 857-860, 2009.
  • 11. Strawn WB, Richmond RS, Ann Tallant E, et al. Renin–angiotensin system expression in rat bone marrow haematopoietic and stromal cells. Br J Haematol 126: 120-126, 2004.
  • 12. Haznedaroglu I, Tuncer S, Gürsoy MA. A local renin-angiotensin system in the bone marrow. Lancet 46: 507-510, 1996.
  • 13. Tyrrell D, Bynoe MJL. Cultivation of viruses from a high proportion of patients with colds. Lancet 287: 76-77, 1966.
  • 14. Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health 25: 278-280, 2020.
  • 15. Chan J, Yuan S, Kok K, et al. A familial cluster of pneumonia associated 21 with the 2019 novel coronavirus indicating person-to-person transmission: a 22 study of a family cluster. Lancet 15: 514-523, 2020.
  • 16. Guan W-j, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 382: 1708- 1720, 2020. 17. Kickbusch I, Leung G. Response to the emerging novel coronavirus outbreak. BMJ 368: m406, 2020.
  • 18. Burnier M, Brunner H. Angiotensin II receptor antagonists. Lancet 355: 637-645, 2000..
  • 19. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395: 565-574, 2020.
  • 20. Chen Y, Guo Y, Pan Y, et al. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 525: 135-140, 2020.
  • 21. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 436: 112- 116, 2005.
  • 22. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med 11: 875-879, 2005.
  • 23. Gurwitz D. Angiotensin receptor blockers as tentative SARSCoV-2 therapeutics. Drug Dev Res 2020 Mar 4. doi: 10.1002/ ddr.21656
  • 24. Fan BE, Chong VCL, Chan SSW, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol 95: E131-E134, 2020.
  • 25. Wang Y, Wang Y, Chen Y, et al. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol 2020 Mar 5. doi: 10.1002/jmv.25748
  • 26. Feng Z, Diao B, Wang R, et al. The novel severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. 2020 Mar 31. doi: https://doi.org/10.1101/2020.03.27.20045427 ((Preprint at medRxiv))
  • 27. Wang X, Xu W, Hu G, et al. SARS-CoV-2 infects T lymphocytes through its spike protein-mediated membrane fusion. CMI 2020 Apr 7. doi: 10.1038/s41423-020-0424-9
  • 28. Guan W-j, Ni Z-y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 382: 1708- 1720, 2020.
  • 29. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506, 2020.
  • 30. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA 323: 1061-1069, 2020.
  • 31. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69: 4-9, 2014.
  • 32. Ferrucci L, Corsi A, Lauretani F, et al. The origins of agerelated proinflammatory state. Blood 105: 2294-2299, 2005.
  • 33. Takizawa H, Boettcher S, Manz MG. . Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119: 2991-3002, 2012.
  • 34. Zhao JL, Ma C, O’Connell RM, et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell stem cell 14: 445-459, 2014.
  • 35. Calder PC, Bosco N, Bourdet-Sicard R, et al. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 40: 95-119, 2017.
  • 36. Dybedal I, Bryder D, Fossum A, et al. Tumor necrosis factor (TNF)–mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 98: 1782-1791, 2001.
  • 37. Hubert C, Savary K, Gasc J-M, Corvol P. The hematopoietic system: a new niche for the renin–angiotensin system. Nat Clin Pract Cardiovasc Med 3: 80-85, 2006.
  • 38. Lin C, Datta V, Okwan-Duodu D, et al. Angiotensin-converting enzyme is required for normal myelopoiesis. The FASEB 25: 1145-1155, 2011.
  • 39. Kato H, Ishida J, Imagawa S, et al. Enhanced erythropoiesis mediated by activation of the renin-angiotensin system via angiotensin II type 1a receptor. The FASEB 19: 2023-2025, 2005.
  • 40. Kwiatkowski BA, Richard RE. Angiotensin II receptor-associated protein (AGTRAP) synergizes with Mpl signaling to promote survival and to increase proliferation rate of hematopoietic cells. Blood 114: 3606, 2009.
  • 41. Haznedaroglu IC, Beyazit Y. Local bone marrow renin–angiotensin system in primitive, definitive and neoplastic haematopoiesis. Clin Sci 124: 307-323, 2013.
  • 42. Park TS, Zambidis ET. A role for the renin-angiotensin system in hematopoiesis. Haematologica 94: 745-747, 2009.
  • 43. Shen XZ, Bernstein KE. The peptide network regulated by angiotensin converting enzyme (ACE) in hematopoiesis. Cell Cycle 10: 1363-1369, 2011.
  • 44. Swirski FK, Nahrendorf M, Etzrodt M, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325: 612-616, 2009.
  • 45. Malhotra D, Fletcher AL, Turley SJ. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev 251: 160-176, 2013.
  • 46. Liu Y, Huang F, Xu J, et al. Anti-hypertensive Angiotensin II receptor blockers associated to mitigation of disease severity in elderly COVID-19 patients. BMJ 2020 Mar 27. doi: https:// doi.org/10.1101/2020.03.20.20039586 ((Preprint at medRxiv)
  • 47. Zhang Y-Z, Holmes EC. A Genomic perspective on the origin and emergence of SARS-CoV-2. Cell 181: 223-227, 2020.
  • 48. Wang Q, Zhang Y, Wu L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181: 1-11, 2020.
  • 49. Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181: 1-9, 2020.
  • 50. Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov. 2020 Jan 26. doi: https://doi. org/10.1101/2020.01.26.919985 (Preprint at medRxiv)
  • 51. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 417: 822-828, 2002.
  • 52. Danilczyk U, Penninger JM. Angiotensin-converting enzyme II in the heart and the kidney. Circ Res 98: 463-471, 2006.
  • 53. Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 203: 622-630, 2004.
  • 54. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. JEM 202: 415-424, 2005.
  • 55. Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 46: 586-590, 2020.
  • 56. Hamming I, Timens W, Bulthuis M, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203: 631-617, 2004.
APA Çiftçiler R, Ciftciler A, Haznedaroglu I (2020). Local Bone Marrow Renin-Angiotensin System and COVID-19. , 113 - 120. 10.4999/uhod.204171
Chicago Çiftçiler Rafiye,Ciftciler Ali Erdinc,Haznedaroglu Ibrahim C. Local Bone Marrow Renin-Angiotensin System and COVID-19. (2020): 113 - 120. 10.4999/uhod.204171
MLA Çiftçiler Rafiye,Ciftciler Ali Erdinc,Haznedaroglu Ibrahim C. Local Bone Marrow Renin-Angiotensin System and COVID-19. , 2020, ss.113 - 120. 10.4999/uhod.204171
AMA Çiftçiler R,Ciftciler A,Haznedaroglu I Local Bone Marrow Renin-Angiotensin System and COVID-19. . 2020; 113 - 120. 10.4999/uhod.204171
Vancouver Çiftçiler R,Ciftciler A,Haznedaroglu I Local Bone Marrow Renin-Angiotensin System and COVID-19. . 2020; 113 - 120. 10.4999/uhod.204171
IEEE Çiftçiler R,Ciftciler A,Haznedaroglu I "Local Bone Marrow Renin-Angiotensin System and COVID-19." , ss.113 - 120, 2020. 10.4999/uhod.204171
ISNAD Çiftçiler, Rafiye vd. "Local Bone Marrow Renin-Angiotensin System and COVID-19". (2020), 113-120. https://doi.org/10.4999/uhod.204171
APA Çiftçiler R, Ciftciler A, Haznedaroglu I (2020). Local Bone Marrow Renin-Angiotensin System and COVID-19. Uluslararası Hematoloji-Onkoloji Dergisi, 30(2), 113 - 120. 10.4999/uhod.204171
Chicago Çiftçiler Rafiye,Ciftciler Ali Erdinc,Haznedaroglu Ibrahim C. Local Bone Marrow Renin-Angiotensin System and COVID-19. Uluslararası Hematoloji-Onkoloji Dergisi 30, no.2 (2020): 113 - 120. 10.4999/uhod.204171
MLA Çiftçiler Rafiye,Ciftciler Ali Erdinc,Haznedaroglu Ibrahim C. Local Bone Marrow Renin-Angiotensin System and COVID-19. Uluslararası Hematoloji-Onkoloji Dergisi, vol.30, no.2, 2020, ss.113 - 120. 10.4999/uhod.204171
AMA Çiftçiler R,Ciftciler A,Haznedaroglu I Local Bone Marrow Renin-Angiotensin System and COVID-19. Uluslararası Hematoloji-Onkoloji Dergisi. 2020; 30(2): 113 - 120. 10.4999/uhod.204171
Vancouver Çiftçiler R,Ciftciler A,Haznedaroglu I Local Bone Marrow Renin-Angiotensin System and COVID-19. Uluslararası Hematoloji-Onkoloji Dergisi. 2020; 30(2): 113 - 120. 10.4999/uhod.204171
IEEE Çiftçiler R,Ciftciler A,Haznedaroglu I "Local Bone Marrow Renin-Angiotensin System and COVID-19." Uluslararası Hematoloji-Onkoloji Dergisi, 30, ss.113 - 120, 2020. 10.4999/uhod.204171
ISNAD Çiftçiler, Rafiye vd. "Local Bone Marrow Renin-Angiotensin System and COVID-19". Uluslararası Hematoloji-Onkoloji Dergisi 30/2 (2020), 113-120. https://doi.org/10.4999/uhod.204171