Yıl: 2020 Cilt: 9 Sayı: 1 Sayfa Aralığı: 120 - 129 Metin Dili: Türkçe İndeks Tarihi: 20-11-2020

Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri

Öz:
5-Floropirimidin-2-karboksilik asit molekülünün kararlı durumları, baz setlerine difüz fonksiyonları eklenerek,DFT/B3LYP fonksiyonu ile hesaplandı. C-C-O-H dihedral açısına bağlı olarak molekülün minimum düzeyde cisve trans olarak iki konformasyona sahip olduğu bulundu. Her iki konformasyon için infrared (IR) spektrum analiziyapıldı. Zamana bağlı yoğunluk fonksiyonel teorisi hesaplarından (TD-DFT) uyarılmış enerji düzeylerinin singletve triplet enerjileri belirlendi. Fock matrisinin ikinci dereceden pertürbasyon teorisi ile yapılan doğal bağ orbitalanalizleri (NBO) ile stabilizasyon enerjileri, ve HOMO-LUMO alt ve üst aralıklarına bağlı enerjileri hesaplandı.Ayrıca moleküle ait C-C ve C-N bağ uzunlukları kullanılarak halkaya ait HOMA (Harmonik osilatördearomatikliğin ölçüsü) dizini bulundu.
Anahtar Kelime:

DFT/TD-DFT and NBO Analysis of 5-Fluoropyrimidine-2-Carboxylic Acid Molecule in Cis and Trans Form

Öz:
Stable states of the 5-fluoropyrimidine-2-carboxylic acid molecule were calculated by adding diffuse functions to the basis sets using DFT / B3LYP function. Depending on the C-C-O-H dihedral angle, it was found that the molecule had a minimum of two conformations as cis and trans. Infrared (IR) spectrum analysis was performed for both conformations. Singlet and triplet energies of excited energy levels were determined from time-dependent density functional theory calculations (TD-DFT). Stabilization energies and energies of HOMO-LUMO lower and upper ranges were calculated by natural bond orbital analysis (NBO) of the Fock matrix with second order perturbation theory. In addition, HOMA (measure of aromaticity in harmonic oscillator) sequence of the ring was found by using C-C and C-N bond lengths of the molecule.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Bhagavan N.V., Ha C.-E. 2015. in Essentials of Medical Biochemistry (Second Edition).
  • [2] Lamont E.B., Schilsky R.L. 1999. The oral fluoropyrimidines in cancer chemotherapy. Clinical Cancer Research, 5 (9): 2289-2296.
  • [3] Rustum Y.M. 2003. Fluoropyrimidines in Cancer Therapy. Springer.
  • [4] Scagliotti G.V., Fossati R., Torri V., Crinò L, Giaccone G, Silvano G, Martelli M, Clerici M, Cognetti F, Tonato M. 2003. Randomized study of adjuvant chemotherapy for completely resected stage I, II or IIIA nonsmall cell lung cancer. Journal of the National Cancer Institute, 95 (19): 1453-1461.
  • [5] Titov E.V., Prikazchikova L.P., Rybchenko L.I., Cherkasov V.M., Rybachenko V.I. 1972. IR spectra of pyrimidine carboxylic acids and some problems involving their structure. Chemistry of Heterocyclic Compounds, 8 (6): 754-756.
  • [6] Breda S., Reva I.D., Lapinski L., Nowak M.J., Fausto R. 2006. Infrared spectra of pyrazine, pyrimidine and pyridazine in solid argon. Journal of Molecular Structure, 786 (2-3): 193-206.
  • [7] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta Jr.J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D. J. 2009. Gaussian 09, Revision A.0.2, Gaussian, Inc., Wallingford CT.
  • [8] Raghavachari K., Binkley J.S., Seeger R., Pople J.A. 1980. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72: 650-654.
  • [9] McLean A.D., Chandler G.S. 1980. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. The Journal of Chemical Physics, 72: 5639-5648.
  • [10] Becke A.D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38: 3098-3100.
  • [11] Lee C., Yang W., Parr R.G. 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37: 785-789.
  • [12] Vosko S.H., Wilk L., Nusair M. 1980. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 58: 1200-1211.
  • [13] Weinhold F., Landis C.R., Valency, Bonding. A. 2005. Natural Bond Orbital Donor acceptor Perspective. Cambridge University Press, New York.
  • [14] Reed A.E., Curtiss L.A., Weinhold F. 1988. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88: 899-926.
  • [15] Lu T., Chen F. 2012. Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33: 580-593.
  • [16] Reva I.D., Stepanian S.G. 1995. An infrared study on matrix-isolated benzoic acid. Journal of Molecular Structure, 349: 337-340.
  • [17] Kuş N., Fausto R. 2014. Near-infrared and ultraviolet induced isomerization of crotonic acid in N2 and Xe cryomatrices: First observation of two high-energy trans C–O conformers and mechanistic insights. The Journal of Chemical Physics, 141: 234310.
  • [18] Hilborn R.C. 1982. Einstein coefficients, cross sections, f values, dipole moments, and all that. American Journal of Physics, 50: 982-986.
  • [19] Morrison C.A., Smart B.A., Rankin D.W.H., Robertson H.E., Pfeffer M., Bodenmuller W., Ruber R., Macht B., Ruoff A., Typke V. 1997. Molecular Structure of 1,3,5-Triazine in Gas, Solution, and Crystal Phases and by ab Initio Calculations. Journal of Physical Chemistry A, 101: 10029- 10038.
  • [20] Kuş N., Breda S., Reva I. D., Tasal E., Ogretir C., Fausto R. 2007. FTIR Spectroscopic and Theoretical Study of the Photochemistry of Matrix‐isolated Coumarin. Photochemistry and Photobiology, 83: 1237-1253.
  • [21] Krygowski T.M., Cyranski M. 1996. Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics. Tetrahedron, 52: 1713-1722.
  • [22] Huertas O., Poater J., Fuentes-Cabrera M., Orozco M., Solà M., Luque F.J. 2006. Local Aromaticity in Natural Nucleobases and Their Size-Expanded Benzo-Fused Derivatives. Journal of Physical Chemistry A, 110: 12249-12258.
  • [23] Krygowski T.M., Stępień B.T., Cyrański M.K.. 2005. How the Substituent Effect Influences πElectron Delocalisation in the Ring of Reactants in the Reaction Defining the Hammett Substituent Constants σm and σp. International Journal of Molecular Sciences, 6: 45-51.
  • [25] Alonso M., Miranda C., Martin N., Herradon B. 2011. Chemical applications of neural networks: aromaticity of pyrimidine derivatives. Physical Chemistry Chemical Physics, 13: 20564-20574.
APA Kus N, ILICAN S (2020). Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. , 120 - 129.
Chicago Kus Nihal,ILICAN S. Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. (2020): 120 - 129.
MLA Kus Nihal,ILICAN S. Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. , 2020, ss.120 - 129.
AMA Kus N,ILICAN S Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. . 2020; 120 - 129.
Vancouver Kus N,ILICAN S Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. . 2020; 120 - 129.
IEEE Kus N,ILICAN S "Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri." , ss.120 - 129, 2020.
ISNAD Kus, Nihal - ILICAN, S.. "Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri". (2020), 120-129.
APA Kus N, ILICAN S (2020). Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(1), 120 - 129.
Chicago Kus Nihal,ILICAN S. Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9, no.1 (2020): 120 - 129.
MLA Kus Nihal,ILICAN S. Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol.9, no.1, 2020, ss.120 - 129.
AMA Kus N,ILICAN S Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(1): 120 - 129.
Vancouver Kus N,ILICAN S Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi. 2020; 9(1): 120 - 129.
IEEE Kus N,ILICAN S "Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri." Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9, ss.120 - 129, 2020.
ISNAD Kus, Nihal - ILICAN, S.. "Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri". Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 9/1 (2020), 120-129.