Yıl: 2020 Cilt: 5 Sayı: 1 Sayfa Aralığı: 29 - 39 Metin Dili: Türkçe DOI: 10.30728/boron.604069 İndeks Tarihi: 02-12-2020

Bor içeren bazı biyoaktif bileşikler

Öz:
Bor, biyolojik açıdan önemli bir elementtir ve doğada tek başına bulunmayıp, diğerelementlerle bileşikler halinde yer alır. Özellikle oksijen içeren molekülleri tercih eder. “Autoinducer 2” gibi hücresel haberleşmede görevli olan molekülden, bortezomib gibi anti-kanserajanı olarak kullanılan moleküle kadar, geniş yelpazede, içerisinde bor bulunan çeşitli biyove sentetik bor içeren bileşikler son derece önemlidir. Bunların yanında son yıllarda, yenibir ilaç sınıfı olarak da tanımlanmaya aday, “bor içeren biyoaktif bileşikler” dikkat çekicidir.Bu bileşikler, özellikle anti-mikrobiyal direncin alarm verdiği şimdiki zaman diliminde veyakın gelecekte, insan sağlığı açısından başvurabileceğimiz moleküler silahlardan biriolmaya namzettir. Birçok bor içeren bileşik elde edilmiş ve bu bileşikler antibakteriyel etkileriaçısından birçok bilim insanı tarafından belli bir seviyeye kadar araştırılmıştır. Çalışmalarsonucunda, bor içeren bileşiklerin bazılarının, medikal alanda antibiyotik olarak kullanılmalarıönerilmiştir. Bazı bakterilerin spesifik koşullar altında, doğal ortamlarında yüksek seviyedebor içeren metabolitler sentezlediği bilinmektedir. Aplasmomisin, boromisin, tartrolon veborofisin doğal kaynaklardan elde edilen bor içeren antibiyotiklerdir. Sentetik olarak üretilen,bor içeren biyoaktif bileşikler olan bortezomib, tavaborol, vaborbaktam, benzaksoborol,akoziborol, iksazomib ve krizaborol ise bazı hastalıkların tedavisinde kullanılmaktadır.Bor, birçok canlı grubunda çeşitli fonksiyonları olan bir elementtir. Aynı zamanda ilaçdizaynı açısından da özel bir potansiyele sahiptir. Bu nedenle, bu makalede, bor içerenbazı biyoaktif bileşiklerin potansiyel kullanımlarını değerlendirmek, etki mekanizmalarınıanlamak ve moleküllerin yapısal çeşitliliğini incelemek hedeflenmiştir.
Anahtar Kelime:

Some examples of boron containing bioactive compounds

Öz:
Boron is a biologically important element and does not exist in nature by itself, rather is present in the compounds with other elements, especially preferring oxygen-containing molecules. Various bio- and synthetic compounds which contain boron are quite intriguing such as auto-inducer 2 which is involved in cellular communication and bortezomib that is used as an anti-cancer agent. Furthermore, in recent years, “boron-containing bioactive compounds”, new candidate classes of drugs are notably catching more attention. In terms of human health, these compounds are one of the molecular tools that can be utilized currently and in the near future when the anti-microbial resistance is at alarming stage. A number of boron containing compounds have been made available and investigated to some degree by a number of scientists for their antibacterial effects. The studies have suggested that some of the boron compounds are and can potentially be used as antibiotics in the medical sector. Some bacteria synthesize high levels of boron containing metabolites in their natural environment under specific conditions. These antibiotics include aplasmomycin, boromycin, tartrolone and borophycin. Some of the boron-containing compounds are also used in the treatment of certain diseases and the examples of such compounds include bortezomib, tavaborole, vaborbactam, benzoxaborole, acoziborole, ixazomib and crisaborole, which have been synthetically produced. Boron, an element of highly diverse functions across many classes of living organisms, also seems to have a unique potential in drug design. Therefore, in this paper, we aimed at reviewing mechanisms of action of these boron containing bioactive compounds and potential uses while examining their structural diversity
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • [1] Soriano-Ursua M. A., Das B. C., Trujillo-Ferrara J. G., Boron-containing compounds: Chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy, Expert Opinion on Therapeutic Patents, 24 (5), 485-500, 2014.
  • [2] Baker S. J., Ding C. Z., Akama T., Zhang Y. K., Hernandez V., Xia Y., Therapeutic potential of boron-containing compounds, Future Med. Chem., 1 (7), 1275-88, 2009.
  • [3] Chen T. S. S., Chang C. J., Heinz G., Floss H. G., Biosynthesis of the boron-containing macrolide antibiotic aplasmomycin by Streptomyces griseus, J. Am. Chem. Soc., 103, 15, 4565-4568, 1981.
  • [4] Kohno J., Kawahata T., Otake T., Morimoto M., Mori H., Ueba N., Nishio M., vd. Boromycin, an Anti-HIV Antibiotic, Biosci., Biotechnol., Biochem., 60 (6), 1036-1037, 1996.
  • [5] Dunitz J. D., Hawley D. M., Miklos D., White D. N. J., Berlin Y., Marusic R., Prelog V., Structure of boromycin, Helv. Chim. Acta, 54 (6), 1709-1713, 1971.
  • [6] Davidson B. S., New dimensions in natural products research: Cultured marine microorganisms, Curr. Opin. Biotechnol., 6, 284–291, 1995.
  • [7] Irschik H., Schummer D., Gerth K., Höfle G., Reichenbach H., The tartrolons, new boron-containing antibiotics from a myxobacterium, Sorangium cellulosum, J. Antibiot., 48 (1), 26-30, 1995.
  • [8] Garcia-Avila A. K., Farfan-García E. D., Guevara-Salazar J. A., Trujillo-Ferrara J. G., Soriano-Ursua M. A., Scope of translational medicine in developing boron-containing compounds for therapeutics, World J. Transl. Med., 6 (1), 1-9, 2017.
  • [9] Kerydin, Anacor Pharmaceuticals, Inc, Palo Alto, CA, 2014.
  • [10] Langley G. W., Cainc R., Tyrrell J.M., Hinchliffe P., Calvopina K., Tooke C. L., Widlake E., vd. Profiling interactions of vaborbactam with metallo-β- actamases, Bioorg. Med. Chem. Lett., 29 (15),1981-1984, 2019.
  • [11] Hackel M. A., Lomovskaya O., Dudley M. N., In vitro activity of meropenem-vaborbactam against clinical isolates of KPC-positive Enterobacteriaceae, Antimicrob Agents Chemother, 62 (1), 1–10, 2018.
  • [12] Raab M. S., Podar K., Breitkreutz I., Richardson P. G., Anderson K. C., Multiple myeloma, Lancet, 374 (9686), 324–39, 2009.
  • [13] Jarnagin K., Chanda S., Coronado D., Crisaborole topical ointment, 2%. a nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 inhibitor in clinical development for the treatment of atopic dermatitis, J. Drugs Dermatol, 15(4), 390–396, 2016.
  • [14] Patterson G. M. L., Larsen K. L., Moore R. E., Bioactive naturalproducts from blue-green-algae, J. Appl. Phycol, 6, 151-157, 1994.
  • [15] Todorova A. K., Juttner F., Nostocyclamide-a new mac rocyclic, thiazole-containing allelochemical from Nostoc sp.-31 (Cyanobacteria), J. Org. Chem, 60, 7891- 7895, 1995.
  • [16] Admi V., Afek U., Carmeli S., Raocyclamides A and B, novel cyclic hexapeptides isolated from the cyanobacterium Oscillatoria raoi, J. Nat. Prod, 59, 396-399, 1996.
  • [17] Eggen M. J., Georg G. I., The cryptophycins: Their synthesis and anticancer activity, Medicinal Res. Rev., 22, 85 -101, 2002.
  • [18] Hemscheidt T., Puglisi M. P., Larsen L. K., Patterson G. M. L., Moore R. E., Rios J. L., Clardy J., Structure and biosynthesis of borophycin, a new boeseken complex of boric acid from a marine strain of the bluegreen alga Nostoc linckia, J. Org. Chem., 59 (12), 3467–3471, 1994.
  • [19] Hu H., Brown P. H., Absorption of boron by plant roots, Plant Soil, 193, 49-58, 1997.
  • [20] Hutter R., Keller-Schierlein W., Knusel F., Prelog V., Rodgers G. C., Suter Jr, P., Vogel G., vd. Stoffwechselprodukte von Microorganismen. Boromycin, Helv. Chim. Acta, 50, 1533-1539, 1967.
  • [21] Okazaki T., Kitahara T., Okami Y., Studies on marine microorganisms. IV. A new antibiotic SS-228 Y produced by Chainia isolated from shallow sea mud, J. Antibiot., 28, 176 /184, 1975.
  • [22] Nakamura H., Iitaka Y., Kitahara T., Okazaki T., Okami Y., Structure of aplasmomycin, J. Antibiot., 30 (9), 714- 719, 1977.
  • [23] Sato K., Okazaki T., Maeda K., Okami Y., New antibiotics, aplasmomycins B and C, J. Antibiot., 31 (6), 632-5, 1978.
  • [24] Stout T.J., Clardy J., Pathirana I.C., Fenical W., Aplasmomycin c: Structural studies of a marine antibiotic, Tetrahedron, 47, 3511-3520, 1991.
  • [25] Okami Y., Okazaki T., Kitahara T., Umezawa H., Studies on marine microorganisms. V. A new antibiotic, aplasmomycin, produced by a streptomycete isolated from shallow sea mud, J. Antibiot., 29, 1019–25, 1976.
  • [26] Shimizu Y., Ogasawara Y., Matsumoto A., Dairi T., Aplasmomycin and boromycin are specific inhibitors of the futalosine pathway, J. Antibiot., (11), 968-970, 2018.
  • [27] Bentley R., Meganathan R., Biosynthesis of vitamin K (menaquinone) in bacteria, Microbiol Rev., 46, 241– 80, 1982.
  • [28] Meganathan R., Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms, Vitam Horm., 61, 173–218, 2001.
  • [29] Hiratsuka T., An alternative menaquinone biosynthetic pathway operating in microorganisms, Sci., 321, 1670–3, 2008.
  • [30] Arakawa C., Diversity of the early step of the futalosine pathway, Antimicrob. Agents Chemother., 55, 913–6, 2011.
  • [31] Mahanta N., Fedoseyenko D., Dairi T., Begley T.P., Menaquinone biosynthesis: formation of aminofutalosine requires a unique radical SAM enzyme, J. Am. Chem. Soc., 135, 15318–21, 2013.
  • [32] Dembitsky V. M., Smoum R., Abed A. Q., Hijazi A. A., Pergament I., Srebnik M., Natural occurrence of bo ron-containing compounds in plants, algae and microorganisms, Plant Sci., 163 (5), 931-942, 2002.
  • [33] Moreira W., Aziz D. B., Dick T., Boromycin kills mycobacterial persisters without detectable resistance, Front. Microbiol., 7, 199, 2016.
  • [34] Pache W., Zahner H., Metabolic products of microorganisms, Archiv für Mikrobiologie, 67 (2), 156-165, 1969.
  • [35] Banker R., Carmeli S., Tenuecyclamides A−D., Cyclic Hexapeptides from the Cyanobacterium Nostoc spongiaeforme var, tenue, J. Nat. Prod., 61 (10), 1248- 1251, 1998.
  • [36] Elshahawi S. I., Trindade-Silva, Amro Hanora A. E., Han A. W., Flores M. S., Vizzoni V., Schrago C. G., vd. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills, Proc. Natl. Acad. Sci., 110 (4), E295-E304, 2013.
  • [37] Schummer D., Schomburg D., Irschik H., Reichenbach H., Höfle G., Absolute Configuration and Biosynthesis of Tartrolon B, a Boron-Containing Macrodiolide from Sorangium cellulosum, Antibiotics from Gliding Bacteria, LXXV, Liebigs Annalen, 6, 965-969, 1996.
  • [38] Lewer P., Chapin E. L., Graupner P. R., Gilbert J. R., Peacock C., Tartrolone C: A Novel Insecticidal Macrodiolide Produced by Streptomyces sp. CP1130, J. Nat. Prod., 66 (1), 143-145, 2003.
  • [39] Perez M., Crespo C., Schleissner C., Rodriguez P., Züniga P., Reyes F., Tartrolon D, a cytotoxic macrodiolide from the marine-derived actinomycete Streptomyces sp. MDG-04-17-069, J. Nat. Prod., 72 (12), 2192–2194, 2009.
  • [40] Schwartz R., Davidson T., Pharmacology, pharmacokinetics, and practical applications of bortezomib, Oncology (Williston Park), 18(14 Suppl 11), 14-21, 2004.
  • [41] Chen D., Frezza M., Schmitt S., Kanwar J., Dou Q. P., Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives, Current Cancer Drug Targets, 11 (3), 239–253, 2011.
  • [42] Patel T., Gores G. J., Kaufmann S. H., The role of proteases during apoptosis, FASEB Journal, 10 (5), 587- 97, 1996.
  • [43] Zhivotovsky B., Burgess D. H., Vanags D. M., Orrenius S., Involvement of cellular proteolytic machinery in apoptosis, Biochem. Biophys. Res. Commun., 230 (3), 481-488, 1997.
  • [44] Smith A., Morgan G. J., Davies F. E., Bortezomib (Velcade™) in the Treatment of Multiple Myeloma, Therapeutics and Clinical Risk Management, 2 (3), 271-279, 2006.
  • [45] Curran M., McKeage K., Bortezomib: A review of its use in patients with multiple myeloma, Drugs, 69 (7), 859–888, 2009.
  • [46] Joshi J., Tanner L., Gilchrist L., Bostrom B., Switching to bortezomib may ımprove recovery from severe vincristine neuropathy in pediatric acute lymphoblastic leukemia, Journal of Pediatric Hematology/Oncology, 41 (6), 457–462, 2019.
  • [47] Ludwig H., Khayat D., Giaccone G., Facon T., Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies, Cancer, 104 (9), 1794-807, 2005.
  • [48] Goy A., Younes A., McLaughlin P., Pro B., Romaguera J. E., Hagemeister F., Fayad L., vd. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma, J. Clin. Oncol., 23 (4), 667-75, 2005.
  • [49] Hong Y. S., Hong S. W., Kim S. M., Jin D. H., Shin J. S., Yoon D. H., Kim K. P., vd. Bortezomib induces G2-M arrest in human colon cancer cells through ROSinducible phosphorylation of ATM-CHK1, Int. J. Oncol., 41 (1), 76-82, 2012.
  • [50] Baker S. J., Zhang Y. K., Akama T., Lau A., Zhou H., Hernandez V., Mao W., vd. Discovery of a new boroncontaining antifungal agent, 5-fluoro-1,3-dihydro-1- hydroxy-2,1- benzoxaborole (AN2690), for the potential treatment of onychomycosis, J. Med. Chem., 49 (15), 4447-50, 2006.
  • [51] Elewski B. E., Tosti A., Tavaborole for the treatment of onychomycosis, Expert Opinion on, 15 (10), 1439- 1448, 2014.
  • [52] Yaremchuk A., Tukalo M., Crepin T., Zhou H., YongKang Z. H., An Antifungal Agent Inhibits an AminoacyltRNA Synthetase by Trapping tRNA in the Editing Site, Science, 316 (5832), 1759-1761, 2007.
  • [53] Johnson A. P., Woodford N., Global spread of antibiotic resistance: The example of New Delhi metallo-betalactamase (NDM)-mediated carbapenem resistance, J. Med. Microbiol., 62,499–513, 2013.
  • [54] Glasner C., Albiger B., Buist G., Andrasevic T. A., Canton R., Carmeli Y., Friedrich A., vd. Carbapenemaseproducing Enterobacteriaceae in Europe: A survey among national experts from 39 countries, February, Eurosurveillance, 18 (28), 2013.
  • [55] Capone A., Giannella M., Fortini D., Giordano A., Meledandri M., Ballardini M., Venditti M., vd. High rate of colistin resistance among patients with carbapenemresistant Klebsiella pneumoniae infection accounts for an excess of mortality, Clin. Microbiol. Infect., 19, E23–E30, 2013.
  • [56] Doi Y., Paterson D. L., Carbapenemase-producing Enterobacteriaceae, Seminars in Respiratory and Critical Care Medicine, 36 (1), 74–84, 2015.
  • [57] Lomovskaya O., Sun D., Rubio-Aparicio D., Nelson K., Tsivkovski R., Griffith D. C., Dudley M. N., Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae, Antimicrob. Agents Chemother., 61 (11), 2017.
  • [58] Dhillon S., Meropenem/Vaborbactam: A Review in complicated urinary tract infections, Drugs, 78 (12), 1259–1270, 2018.
  • [59] Codjoe F. S., Donkor E. S., Carbapenem resistance: A review, Med. Sci., 6 (1), 1, 2017.
  • [60] Cho J. C., Zmarlicka M. T., Shaeer K. M., Pardo J., Meropenem/Vaborbactam, the first carbapenem/βlactamase inhibitor combination, Ann. Pharmacother., 52 (8), 769-779, 2018.
  • [61] Castanheira M., Rhomberg P. R., Flamm R. K., Jones R. N., Effect of the β-lactamase inhibitor vaborbactam combined with meropenem against serine carbapenemase-producing enterobacteriaceae, Antimicrob Agents Chemother, 60 (9), 5454-8, 2016.
  • [62] Vabomere (combination) monograph for professionals, Drugs.com, Retrieved 6 November 2019
  • [63] Lee Y., Kim J., Trinh S., Meropenem–Vaborbactam (Vabomere™): Another Option for Carbapenem-Resistant Enterobacteriaceae, P T, 44(3), 110–113, 2019.
  • [64] Castanheira M., Huband M. D., Mendes R. E., Flamm R. K., Meropenem-Vaborbactam tested against contemporary gram-negative isolates collected worldwide during 2014, including carbapenem-resistant, KPCProducing, Multidrug-resistant, and extensively drugresistant Enterobacteriaceae, Antimicrob Agents Chemother. 61(9), 2017.
  • [65] Mao W., Seiradake E., Rock F., Crepin T., Zhou Y., Ip E., Plattner J., vd. Antifungal activity and mechanism of action of a benzoxaborole, AN2718, which is in development for the treatment of tinea pedis, 48th Interscience Conference on Antimicrobial Agents and Chemotherapy, USA, 25-28 October, 2008.
  • [66] Gupta A. K., Chaudhry M., Elewski B., Treatments of tinea pedis, Dermatologic Clinics, 21, 431-462, 2003.
  • [67] Jacobs R. T., Nare B., Wring S. A., Bacchi C., Brun R., Plattner J. J., Beaudet B., vd., Efficacy and pharmacokinetics of SCYX-7158 (AN5568): A novel and potent oxaborole-6-carboxamide selected as a pre-clinical candidate for once-daily oral treatment for stage 2 human african trypanosomiasis, (Conference Paper, 2009).
  • [68] Wall R. J., Rico E., Lukac I., Zuccotto F., Elg S., Gilbert I. H., Freund Y., vd. Clinical and veterinary trypanocidal benzoxaboroles target CPSF3, Proceedings of the National Academy of Sciences, 115 (38), 9616-9621, 2018.
  • [69] Field M. C., Horn D., Fairlamb A. H., Ferguson M. A., Gray D. W., Read K. D., De Rycker M., vd. Anti-trypanosomatid drug discovery: An ongoing challenge and a continuing need, Nat. Rev. Microbiol., 15 (4), 217–231, 2017.
  • [70] Jones D. C., Foth B. J., Urbaniak M. D., Patterson S., Ong H. B., Berriman M., Fairlamb A. H., Genomic and proteomic studies on the mode of action of oxaboroles against the african trypanosome, PLOS Negl.Trop. Dis., 9 (12), e0004299, 2015.
  • [71] Steketee P. C., Vincent I. M., Achcar F., Giordani F., Kim D. H., Creek D. J., Freund Y., vd. Benzoxaborole treatment perturbs S-adenosyl-L-methionine metabolism in Trypanosoma brucei, PLOS Negl.Trop. Dis., 12 (5), e0006450, 2018.
  • [72] Kupperman E., Lee E. C., Cao Y., Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer, Cancer Res., 70 (5), 1970–80, 2010.
  • [73] Muz B., Ghazarian R. N., Ou M., Luderer M. J., Kusdono H. D., Azab A. K., Spotlight on ixazomib: Potential in the treatment of multiple myeloma, Drug Design, Development and Therapy., 10, 217–26, 2016.
  • [74] Chauhan D., Tian Z., Zou B., Kuhn D., Orlowski R., Raje N., Richardson P., vd. In vitro and In vivo selective antitumor activity of a novel orally bioavailable proteasome ınhibitor MLN9708 against multiple myeloma cells, Clin Cancer Res., 17 (16), 5311–5321, 2011.
  • [75] Obeng E. A., Carlson L. M., Gutman D. M., Harrington W. J, Lee K. P., Boise L. H., Proteasome inhibitors in- duce a terminal unfolded protein response in multiple myeloma cells, Blood, 107 (12), 4907-16, 2006.
  • [76] Moustafa F., Feldman S. R., A Review of phosphodiesterase-inhibition and the potential role for phosphodiesterase 4-inhibitors in clinical dermatology, Dermatology Online Journal, 20 (5), 22608, 2014.
  • [77] Freund Y. R., Akama T., Alley M. R., Boron-based phosphodiesterase inhibitors show novel binding of boron to PDE4 bimetal center, FEBS Lett., 586 (19), 3410–3414, 2012.
  • [78] Kobayashi M., Matoh T., Azuma J., Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls, Plant Physiology, 110: 1017-1020: 1996.
  • [79] Chen X., Schauder S., Potier N., Dorsselaer V. A., Pelczer I., Bassler B. L., Hughson F. M., Structural identification of a bacterial quorum-sensing signal containing boron, Nature, 415, 545–549, 2002.
APA Dibek E, Anara B, Sezer M, Akgüç Col N, ÇOL B (2020). Bor içeren bazı biyoaktif bileşikler. , 29 - 39. 10.30728/boron.604069
Chicago Dibek Esra,Anara Babayeva,Sezer MERVE,Akgüç Col Nihan,ÇOL BEKIR Bor içeren bazı biyoaktif bileşikler. (2020): 29 - 39. 10.30728/boron.604069
MLA Dibek Esra,Anara Babayeva,Sezer MERVE,Akgüç Col Nihan,ÇOL BEKIR Bor içeren bazı biyoaktif bileşikler. , 2020, ss.29 - 39. 10.30728/boron.604069
AMA Dibek E,Anara B,Sezer M,Akgüç Col N,ÇOL B Bor içeren bazı biyoaktif bileşikler. . 2020; 29 - 39. 10.30728/boron.604069
Vancouver Dibek E,Anara B,Sezer M,Akgüç Col N,ÇOL B Bor içeren bazı biyoaktif bileşikler. . 2020; 29 - 39. 10.30728/boron.604069
IEEE Dibek E,Anara B,Sezer M,Akgüç Col N,ÇOL B "Bor içeren bazı biyoaktif bileşikler." , ss.29 - 39, 2020. 10.30728/boron.604069
ISNAD Dibek, Esra vd. "Bor içeren bazı biyoaktif bileşikler". (2020), 29-39. https://doi.org/10.30728/boron.604069
APA Dibek E, Anara B, Sezer M, Akgüç Col N, ÇOL B (2020). Bor içeren bazı biyoaktif bileşikler. BOR DERGİSİ, 5(1), 29 - 39. 10.30728/boron.604069
Chicago Dibek Esra,Anara Babayeva,Sezer MERVE,Akgüç Col Nihan,ÇOL BEKIR Bor içeren bazı biyoaktif bileşikler. BOR DERGİSİ 5, no.1 (2020): 29 - 39. 10.30728/boron.604069
MLA Dibek Esra,Anara Babayeva,Sezer MERVE,Akgüç Col Nihan,ÇOL BEKIR Bor içeren bazı biyoaktif bileşikler. BOR DERGİSİ, vol.5, no.1, 2020, ss.29 - 39. 10.30728/boron.604069
AMA Dibek E,Anara B,Sezer M,Akgüç Col N,ÇOL B Bor içeren bazı biyoaktif bileşikler. BOR DERGİSİ. 2020; 5(1): 29 - 39. 10.30728/boron.604069
Vancouver Dibek E,Anara B,Sezer M,Akgüç Col N,ÇOL B Bor içeren bazı biyoaktif bileşikler. BOR DERGİSİ. 2020; 5(1): 29 - 39. 10.30728/boron.604069
IEEE Dibek E,Anara B,Sezer M,Akgüç Col N,ÇOL B "Bor içeren bazı biyoaktif bileşikler." BOR DERGİSİ, 5, ss.29 - 39, 2020. 10.30728/boron.604069
ISNAD Dibek, Esra vd. "Bor içeren bazı biyoaktif bileşikler". BOR DERGİSİ 5/1 (2020), 29-39. https://doi.org/10.30728/boron.604069