Yıl: 2020 Cilt: 48 Sayı: 6 Sayfa Aralığı: 558 - 565 Metin Dili: İngilizce DOI: 10.5543/tkda.2020.45605 İndeks Tarihi: 05-12-2020

New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA

Öz:
Objective: Coronary slow-flow phenomenon (CSFP) is defined as the delayed arrival of coronary blood flow to thedistal vascular bed in at least 1 major epicardial coronaryartery. Cell-free DNA (cfDNA) is a type of DNA that circulates freely in the blood once released from nucleated cells.The aim of this study was to determine if the level of cfDNA,which is an indicator of ischemia at the cellular level, wasincreased in CSFP.Methods: The study included 46 patients in total: 23 patients with CSFP and 23 with a normal coronary angiogram(NCA). The level of cfDNA, and clinical, biochemical, andangiographic features of the groups were compared.Results: The mean age was 53.8±10.3 years for the CSFPpatient group and 56.6±9.4 years for the NCA patient group.There was no statistically significant difference between thegroups in terms of basal clinical characteristics or laboratory data. The plasma cfDNA level was 5.04±2.37 ng/µL inthe CSFP patients and 2.28±1.09 ng/µL in the NCA group(p<0.001).Conclusion: Several invasive and noninvasive studies conducted on patients with CSFP have revealed myocardialischemia. The results of this study demonstrated that thelevel of cfDNA was significantly increased in patients withCSFP as a result of ischemia at the cellular level caused bymicrovascular disruption.
Anahtar Kelime:

Koroner yavaş akım fenomeninde hücresel iskemi için yeni gösterge: Serbest DNA

Öz:
Amaç: Koroner yavaş akım fenomeni (KYAF) en az bir majör epikardiyal koroner arterde kan akımının distal damar yatağına geç ulaşması olarak tanımlanır. Serbest hücresel DNA (shDNA), hücre nükleuslarından serbestleşen ve dolaşımda serbest olarak tespit edilebilen DNA tipidir. Bu çalışmada, KYAF’de hücresel düzeyde iskeminin göstergesi olan shDNA düzeylerinin artıp artmadığını göstermeyi amaçladık. Yöntemler: Bu çalışmaya, 23 KYAF’lı ve 23 anjiyografik olarak normal koroner arterlere (NKA) sahip toplam 46 hasta alındı. Grupların shDNA düzeyleri, klinik, biyokimyasal ve anjiyografik özellikleri karşılaştırıldı. Bulgular: Ortalama yaş KYAF grubunda 53.8±10.3 ve NKA grubunda 56.6±9.4 idi. Laboratuvar bulguları ve bazal klinik karekteristikleri yönünden gruplar arasında istatistiksel anlamlı fark yoktu. Plazma shDNA düzeyleri KYAF’da 5.04±2.37 ng/µL, NKA’da 2.28±1.09 ng/µL olarak tespit edildi (p<0.001). Sonuç: Farklı invaziv ve noninvaziv çalışmalar KYAF’da miyokardiyal iskeminin varlığını göstermiştir. Çalışmamızda KYAF’lı hastalarda mikrovasküler bozukluğa bağlı olarak, hücresel düzeyde iskemi ve hasarın göstergesi olan shDNA düzeyinin anlamlı şekilde arttığını gösterdik.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. TIMI Study Group. The Thrombolysis in Myocardial Infarction (TIMI) trial. Phase I findings. N Engl J Med 1985;312:932–6.
  • 2. Goel PK, Gupta SK, Agarwal A, Kapoor A. Slow coronary flow: a distinct angiographic subgroup in syndrome X. Angiology 2001;52:507–14.
  • 3. Beltrame JF, Limaye SB, Horowitz JD. The coronary slow flow phenomenon-a new coronary microvascular disorder. Cardiology 2002;97:197–202.
  • 4. Saya S, Hennebry TA, Lozano P, Lazzara R, Schechter E. Coronary slow flow phenomenon and risk for sudden cardiac death due to ventricular arrhythmias: a case report and review of literature. Clin Cardiol 2008;31:352–5.
  • 5. Tambe AA, Demany MA, Zimmerman HA, Mascarenhas E. Angina pectoris and slow flow velocity of dye in coronary arteries-a new angiographic finding. Am Heart J 1972;84:66– 71.
  • 6. Cutri N, Zeitz C, Kucia AM, Beltrame JF. ST/T wave changes during acute coronary syndrome presentation in patients with the coronary slow flow phenomenon. Int J Cardiol 2011;146:457–8.
  • 7. Horjeti B, Goda A. Acute ischemia manifestation in a patient with coronary slow flow phenomenon. J Electrocardiol 2012;45:277–9.
  • 8. Marinescu MA, Löffler AI, Ouellette M, Smith L, Kramer CM, Bourque JM. Coronary microvascular dysfunction, microvascular angina, and treatment strategies. JACC Cardiovasc Imaging 2015;8:210–20.
  • 9. Oktay V, Arat Özkan A. Coronary slow flow. Turk Kardiyol Dern Ars 2016;44:193–5.
  • 10. Mosseri M, Yarom R, Gotsman MS, Hasin Y. Histologic evidence for small-vessel coronary artery disease in patients with angina pectoris and patent large coronary arteries. Circulation 1986;74:964–72.
  • 11. Lo YM, Tein MS, Lau TK, Haines CJ, Leung TN, Poon PM, et al. Quantitative analysis of fetal DNA in maternal plasma and serum: implications for noninvasive prenatal diagnosis. Am J Hum Genet 1998;62:768–75.
  • 12. Lo YM, Rainer TH, Chan LY, Hjelm NM, Cocks RA. Plasma DNA as a prognostic marker in trauma patients. Clin Chem 2000;46(3):319–23.
  • 13. Song H, Nan Y, Cheng XW. Circulating cf-DNA: a promising, noninvasive tool for assessment of early cardiometabolic risk. Atherosclerosis 2014;233(1):307–9.
  • 14. Mandel P, Metais P. Les acides nucléiques du plasma sanguin chez l’homme. [Article in French] C R Seances Soc Biol Fil 1948;142:241–3.
  • 15. Pathak AK, Bhutani M, Kumar S, Mohan A, Guleria R. Circulating cell-free DNA in plasma/serum of lung cancer patients as a potential screening and prognostic tool. Clin Chem 2006;52:1833–42.
  • 16. Bendich A, Wilczok T, Borenfreund E. Circulating DNA as a possible factor in oncogenesis. Science 1965;148:374–6.
  • 17. Tan EM, Schur PH, Carr RI, Kunkel HG. Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest 1966;45:173240.
  • 18. Koffler D, Agnello V, Winchester R, Kunkel HG. The occurrence of single-stranded DNA in the serum of patients with systemic lupus erythematosus and other diseases. J Clin Invest 1973;52:198–204.
  • 19. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977;37:646–50.
  • 20. Ponti G, Maccaferri M, Manfredini M, Kaleci S, Mandrioli M, Pellacani G, et al. The value of fluorimetry (Qubit) and spectrophotometry (NanoDrop) in the quantification of cellfree DNA (cfDNA) in malignant melanoma and prostate cancer patients. Clin Chim Acta 2018;479:14–19.
  • 21. Francaviglia I, Magliacane G, Grassini G, Girlando S, Medicina D, Lazzari C, et al. Identification and monitoring of somatic mutations in circulating cell-free DNA by next-generation sequencing in patients with lung adenocarcinoma. Cancer Research 2018;78:5580.
  • 22. Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, et al. International standardization of diagnostic criteria for microvascular angina. Int J Cardiol 2018;250:16– 20.
  • 23. Narimani S, Hosseinsabet A, Pourhosseini H. Effect of Coronary Slow Flow on the Longitudinal Left Ventricular Function Assessed by 2-Dimensional Speckle-Tracking Echocardiography. J Ultrasound Med 2016;35:723–9.
  • 24. Cakmak M, Tanriverdi H, Cakmak N, Evrengul H, Cetemen S, Kuru O. Simvastatin may improve myocardial perfusion abnormality in slow coronary flow. Cardiology 2008;110:39– 44.
  • 25. Gökçe M, Kaplan S, Tekelioğlu Y, Erdoğan T, Küçükosmanoğlu M. Platelet function disorder in patients with coronary slow flow. Clin Cardiol 2005;28:145–8.
  • 26. Yilmaz H, Demir I, Uyar Z. Clinical and coronary angiographic characteristics of patients with coronary slow flow. Acta Cardiol 2008;63:579–84.
  • 27. Sezgin AT, Sigirci A, Barutcu I, Topal E, Sezgin N, Ozdemir R, et al. Vascular endothelial function in patients with slow coronary flow. Coron Artery Dis 2003;14:155–61.
  • 28. Cin VG, Pekdemir H, Camsar A, Ciçek D, Akkus MN, Parmaksız T, et al. Diffuse intimal thickening of coronary arteries in slow coronary flow. Jpn Heart J 2003;44:907–19.
  • 29. Pekdemir H, Cin VG, Ciçek D, Camsari A, Akkus N, Döven O, et al. Slow coronary flow may be a sign of diffuse atherosclerosis. Contribution of FFR and IVUS. Acta Cardiol 2004;59:127–33.
  • 30. Camsarl A, Pekdemir H, Cicek D, Polat G, Akkus MN, Döven O, et al. Endothelin-1 and nitric oxide concentrations and their response to exercise in patients with slow coronary flow. Circ J 2003;67:1022–8.
  • 31. Pekdemir H, Cicek D, Camsari A, Akkus MN, Cin VG, Doven O, et al. The relationship between plasma endothelin-1, nitric oxide levels, and heart rate variability in patients with corenary slow flow. Ann Noninvasive Electrocardiol 2004;9:24– 33.
  • 32. Pekdemir H, Polat G, Cin VG, Camsari A, Cicek D, Akkus MN, et al. Elevated plasma endothelin-1 levels in coronary sinus during rapid right atrial pacing in patients with slow coronary flow. Int J Cardiol 2004;97:35–41.
  • 33. Mangieri E, Macchiarelli G, Ciavolella M, Barillà F, Avella A, Martinotti A, et al. Slow coronary flow: clinical and histopathological features in patients with otherwise normal epicardial coronary arteries. Cathet Cardiovasc Diagn 1996;37:375–81.
  • 34. Seyis S. Effect of Coronary Slow Flow on Intrinsicoid Deflection of QRS Complex. Cardiol Res Pract 2018;2018:2451581. 35. Barutcu İ, Sezgin AT, Güllü H, Esen AM. Slow coronary flow phenomenon associated with exercise-induced myocardial ischemia. Turkish Journal of Thoracic and Cardiovascular Surgery 2005;13:295–7.
  • 36. Sadr-Ameli MA, Saedi S, Saedi T, Madani M, Esmaeili M, Ghardoost B. Coronary slow flow: Benign or ominous?. Anatol J Cardiol 2015;15:531–5.
  • 37. Lou X, Hou Y, Liang D, Peng L, Chen H, Ma S, et al. A novel Alu-based real-time PCR method for the quantitative detection of plasma circulating cell-free DNA: sensitivity and specificity for the diagnosis of myocardial infarction. Int J Mol Med 2015;35:72–80.
  • 38. Jung K, Fleischhacker M, Rabien A. Cell-free DNA in the blood as a solid tumor biomarker-a critical appraisal of the literature. Clin Chim Acta 2010;411:1611–24.
  • 39. Chang CP, Chia RH, Wu TL, Tsao KC, Sun CF, Wu JT. Elevated cell-free serum DNA detected in patients with myocardial infarction. Clin Chim Acta 2003;327:95–101.
  • 40. Jing RR, Wang HM, Cui M, Fang MK, Qiu XJ, Wu XH, et al. A sensitive method to quantify human cell-free circulating DNA in blood: relevance to myocardial infarction screening. Clin Biochem 2011;44:1074–19.
  • 41. Destouni A, Vrettou C, Antonatos D, Chouliaras G, TraegerSynodinos J, Patsilinakos S, et al. Cell-free DNA levels in acute myocardial infarction patients during hospitalization. Acta Cardiol 2009;64:51–7.
  • 42. Cui M, Fan M, Jing R, Wang H, Qin J, Sheng H, et al. CellFree circulating DNA: a new biomarker for the acute coronary syndrome. Cardiology 2013;124:76–84.
APA yolcu m, Dogan A, kurtoglu n, hancer v, GÜRBÜZEL M (2020). New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. , 558 - 565. 10.5543/tkda.2020.45605
Chicago yolcu mustafa,Dogan Ali,kurtoglu nuri,hancer veysel sabri,GÜRBÜZEL MEHMET New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. (2020): 558 - 565. 10.5543/tkda.2020.45605
MLA yolcu mustafa,Dogan Ali,kurtoglu nuri,hancer veysel sabri,GÜRBÜZEL MEHMET New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. , 2020, ss.558 - 565. 10.5543/tkda.2020.45605
AMA yolcu m,Dogan A,kurtoglu n,hancer v,GÜRBÜZEL M New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. . 2020; 558 - 565. 10.5543/tkda.2020.45605
Vancouver yolcu m,Dogan A,kurtoglu n,hancer v,GÜRBÜZEL M New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. . 2020; 558 - 565. 10.5543/tkda.2020.45605
IEEE yolcu m,Dogan A,kurtoglu n,hancer v,GÜRBÜZEL M "New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA." , ss.558 - 565, 2020. 10.5543/tkda.2020.45605
ISNAD yolcu, mustafa vd. "New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA". (2020), 558-565. https://doi.org/10.5543/tkda.2020.45605
APA yolcu m, Dogan A, kurtoglu n, hancer v, GÜRBÜZEL M (2020). New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. Türk Kardiyoloji Derneği Arşivi, 48(6), 558 - 565. 10.5543/tkda.2020.45605
Chicago yolcu mustafa,Dogan Ali,kurtoglu nuri,hancer veysel sabri,GÜRBÜZEL MEHMET New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. Türk Kardiyoloji Derneği Arşivi 48, no.6 (2020): 558 - 565. 10.5543/tkda.2020.45605
MLA yolcu mustafa,Dogan Ali,kurtoglu nuri,hancer veysel sabri,GÜRBÜZEL MEHMET New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. Türk Kardiyoloji Derneği Arşivi, vol.48, no.6, 2020, ss.558 - 565. 10.5543/tkda.2020.45605
AMA yolcu m,Dogan A,kurtoglu n,hancer v,GÜRBÜZEL M New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. Türk Kardiyoloji Derneği Arşivi. 2020; 48(6): 558 - 565. 10.5543/tkda.2020.45605
Vancouver yolcu m,Dogan A,kurtoglu n,hancer v,GÜRBÜZEL M New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA. Türk Kardiyoloji Derneği Arşivi. 2020; 48(6): 558 - 565. 10.5543/tkda.2020.45605
IEEE yolcu m,Dogan A,kurtoglu n,hancer v,GÜRBÜZEL M "New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA." Türk Kardiyoloji Derneği Arşivi, 48, ss.558 - 565, 2020. 10.5543/tkda.2020.45605
ISNAD yolcu, mustafa vd. "New indicator of cellular ischemia in coronary slow-flow phenomenon: Cell-free DNA". Türk Kardiyoloji Derneği Arşivi 48/6 (2020), 558-565. https://doi.org/10.5543/tkda.2020.45605