Yıl: 2020 Cilt: 13 Sayı: 2 Sayfa Aralığı: 51 - 56 Metin Dili: İngilizce DOI: http://doi.org/10.25135/acg.oc.77.20.03.1594 İndeks Tarihi: 17-12-2020

N-Substituted aziridine-2-phosphonic acids and their antibacterial activities

Öz:
N-substituted aziridine diethyl phosphonates were synthesized easily in two steps starting from vinylphosphonate or acetyl phosphonate. The controlled mono hydrolysis without opening the aziridine ring under mildreaction conditions was achieved by alkaline solution of LiOH. The corresponding phosphonic acid lithium saltwas desalted by the use of Amberlite IRC-50H+acting as an efficient and recyclable weakly acidic cation exchangepromoter. Antimicrobial activity of the synthesized compounds was tested against E. coli ATCC 25922,Staphylococcus aureus (MRSA), Klebsiella pneumoniae NRLL B-4420, Acetobacter baumanii (wild type),Pseudomonas aeroginosa (ATCC 27853) and Enterobacter aerogenes NRLL B-3567. In general, all thecompounds showed moderate antibacterial activity.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Naydenova, E. D.; Todorov, P T.; Troev, K. D. Recent synthesis of aminophosphonic acids as potential biological importance. Amino Acids 2010, 38, 23–30.
  • [2] Horsman, G. P.; Zechel, D. L. Phosphonate biochemistry. Chem. Rev. 2017, 117, 5704−5783.
  • [3] Rabinowitz, R. Synthesis of monoesters of phosphonic acids. J. Am. Chem. Soc., 1960, 82, 4564–4567.
  • [4] Huang, J.; Chen, R. An overview of recent advances on the synthesis and biological activity of α- aminophosphonic acid derivatives. Heteroatom Chem. 2000, 11, 480-492.
  • [5] Failla, S.; Finocchiaro, P.; Consiglio, G. A. Syntheses, characterization, stereochemistry and complexing properties of acyclic and macrocyclic compounds possessing α-amino or α-hydroxyphosphonate units. Heteroatom Chem. 2000, 11, 493-504.
  • [6] Zefirov, N. S.; Matveeva, E. D. Catalytic Kabachnik-Fields reaction: new horizons for old reaction. Arkivoc 2008, (i), 1-17.
  • [7] Tarik E. A. Synthetic methods of cyclic α-aminophosphonic acids and their esters. Arkivoc 2014, (i), 21-91.
  • [8] Christensen, B. G.; Beattie, T. R. Ger. Offen. 2011092, 1970; Chem. Abstr. 1971, 74, 42491.
  • [9] Davis, F. A.; Wu, Y. Z.; Yan, H.; Kavirayani, R. P.; McCoull, W. 2H-Azirine 3-phosphonates:  A new class of chiral iminodienophiles. asymmetric synthesis of quaternary piperidine phosphonates. Org. Lett. 2002, 4, 655-658.
  • [10] Davis, F. A.; McCoull, W.; Titus, D. D. Asymmetric synthesis of α-methylphosphophenylalanine derivatives using sulfinimine-derived enantiopure aziridine-2-phosphona. Org. Lett. 1999, 1, 1053-1055.
  • [11] Davis, F. A.; Wu, Y.; Yan, H.; McCoull, W.; Prasad, K. R. Asymmetric synthesis of aziridine 2-phosphonates from enantiopure sulfinimines (N-sulfinyl imines). Synthesis of α-amino phosphonates. J. Org. Chem. 2003, 68, 2410-2419.
  • [12] Zygmunt, J. Aziridine-2-phosphonic acid, the valuable synthon for synthesis of 1-amino-2-functionalized ethanephosphonic acids. Tetrahedron 1985, 41, 4979-4982.
  • [13] Khan, R.; Ulusan, S.; Banerjee, S.; Dogan, Ö. Synthesis, characterization and evaluation of cytotoxic activities of novel aziridinyl phosphonic acid derivatives. Chem. Biodiversity 2019, 16, e1900375.
  • [14] Doğan, Ö.; Babiz, H.; Gözen, A. G.; Budak, S. Synthesis of 2-aziridinyl phosphonates by modified GabrielCromwell reaction and their antibacterial activities. Eur. J. Med. Chem. 2011, 46, 2485-2489.
  • [15] Stanković, S.; D'hooghe M.; Catak, S.; Eum H.; Waroquier, M.; Speybroeck, V. V.; De Kimpe, N.; Ha, H. J. Regioselectivity in the ring opening of non-activated aziridines. Chem. Soc. Rev., 2012, 41, 643-665.
  • [16] Florio, S.; Luisi, R. Aziridinyl anions: Generation, reactivity, and use in modern synthetic chemistry. Chem. Rev. 2010, 110, 5128-5157.
  • [17] Lu, P. Recent developments in regioselective ring opening of aziridines. Tetrahedron 2010, 66, 2549-2560.
  • [18] Hu, X. E. Nucleophilic ring opening of aziridines. Tetrahedron 2004, 60, 2701-2743.
  • [19] Righi, G.; Potini, C., Bovicelli, P. Stereo- and regioselective ring opening of alkenyl aziridines with metal halides. Tetrahedron Lett. 2002, 43, 5867-5869.
  • [20] Righi, G., Franchini, T.; Bonini, C. Highly regioselective opening of optically active N-Boc-2,3-aziridino alcohol derivatives with metal halides. Tetrahedron. Lett. 1998, 39, 2385-2388.
  • [21] Hu, X. E. Nucleophilic ring opening of aziridines. Tetrahedron 2004, 60, 2701–2743.
  • [22] Ion Exchange Technologies, edited by Kilislioglu, A. Intech Open, November, 2012.
  • [23] Dogan, Ö.; Polat-Çakır, S.; Beksultanova N.; Altanlar N.; Simsek D.; Karabıyık H. Enantioselective synthesis of new chiral 2-aziridinyl phosphonates and studies of their biological activities. Tetrahedron: Asymmetry 2017, 28, 324–329.
  • [24] Hossain, S.; Gupta, K. S.; Murugavel, R. 2,6-Dimethylphenol derived H-phosphonate and α-hydroxyphosphonate: facile synthesis, crystal chemistry, supramolecular association and metal complexation. Cryst. Eng. Comm. 2015, 17, 4355.
  • [25] Qaiyumi, S. Macro-and microdilution methods of antimicrobial susceptibility testing. In “Antimicrobial Susceptibility Testing Protocols”, Schwalbe, R., Steele-Moore, L. and Goodwin, A. C. (eds), p.75-79, 2007, CRC Press.
APA Khan D, Dogan O, GUVEN K (2020). N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. , 51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
Chicago Khan Dr. Rehan,Dogan Ozdemir,GUVEN KIYMET N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. (2020): 51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
MLA Khan Dr. Rehan,Dogan Ozdemir,GUVEN KIYMET N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. , 2020, ss.51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
AMA Khan D,Dogan O,GUVEN K N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. . 2020; 51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
Vancouver Khan D,Dogan O,GUVEN K N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. . 2020; 51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
IEEE Khan D,Dogan O,GUVEN K "N-Substituted aziridine-2-phosphonic acids and their antibacterial activities." , ss.51 - 56, 2020. http://doi.org/10.25135/acg.oc.77.20.03.1594
ISNAD Khan, Dr. Rehan vd. "N-Substituted aziridine-2-phosphonic acids and their antibacterial activities". (2020), 51-56. https://doi.org/http://doi.org/10.25135/acg.oc.77.20.03.1594
APA Khan D, Dogan O, GUVEN K (2020). N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. Organic Communications, 13(2), 51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
Chicago Khan Dr. Rehan,Dogan Ozdemir,GUVEN KIYMET N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. Organic Communications 13, no.2 (2020): 51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
MLA Khan Dr. Rehan,Dogan Ozdemir,GUVEN KIYMET N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. Organic Communications, vol.13, no.2, 2020, ss.51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
AMA Khan D,Dogan O,GUVEN K N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. Organic Communications. 2020; 13(2): 51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
Vancouver Khan D,Dogan O,GUVEN K N-Substituted aziridine-2-phosphonic acids and their antibacterial activities. Organic Communications. 2020; 13(2): 51 - 56. http://doi.org/10.25135/acg.oc.77.20.03.1594
IEEE Khan D,Dogan O,GUVEN K "N-Substituted aziridine-2-phosphonic acids and their antibacterial activities." Organic Communications, 13, ss.51 - 56, 2020. http://doi.org/10.25135/acg.oc.77.20.03.1594
ISNAD Khan, Dr. Rehan vd. "N-Substituted aziridine-2-phosphonic acids and their antibacterial activities". Organic Communications 13/2 (2020), 51-56. https://doi.org/http://doi.org/10.25135/acg.oc.77.20.03.1594