Yıl: 2020 Cilt: 26 Sayı: 4 Sayfa Aralığı: 363 - 369 Metin Dili: İngilizce DOI: 10.5152/dir.2019.19445 İndeks Tarihi: 25-12-2020

Resting-state fMRI analysis in apathetic Alzheimer's disease

Öz:
PURPOSEDiagnosis of comorbid psychiatric conditions are a significant determinant for the prognosis of neurodegenerative diseases. Apathy, which is a behavioral executive dysfunction, frequently accompanies Alzheimer's disease (AD) and leads to higher daily functional loss. We assume that frontal lobe hypofunction in apathetic AD patients are more apparent than the AD patients without apathy. This study aims to address the neuroanatomical correlates of apathy in the early stage of AD using task-free functional magnetic resonance imaging (MRI).METHODSPatients (n=20) were recruited from the Neurology and Psychiatry Departments of İstanbul University, İstanbul School of Medicine whose first referrals were 6- to 12-month history of progressive cognitive decline. Patients with clinical dementia rating 0.5 and 1 were included in the study. The patient group was divided into two subgroups as apathetic and non-apathetic AD according to their psychiatric examination and assessment scores. A healthy control group was also included (n=10). All subjects underwent structural and functional MRI. The resting-state condition was recorded eyes open for 5 minutes.RESULTSThe difference between the three groups came up in the pregenual anterior cingulate cortex (pgACC) at the trend level (P = 0.056). Apathetic AD group showed the most constricted activation area at pgACC.CONCLUSIONThe region in and around anterior default mode network (pgACC) seems to mediate motivation to initiate behavior, and this function appears to weaken as the apathy becomes more severe in AD.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
0
0
0
  • 1. Marin RS, Wilkosz PA. Disorders of diminished motivation. J Head Trauma Rehab 2005; 20:377–388. [Crossref]
  • 2. Robert P, Onyike CU, Leentjens AFG, et al. Proposed diagnostic criteria for apathy in Alzheimer's disease and other neuropsychiatric disorders. Eur Psychiatry 2009; 24:98–104.
  • 3. Zhao QFL, Tan HF, Wang T, et al. The prevalence of neuropsychiatric symptoms in Alzheimer's disease: Systematic review and meta-analysis. J Affect Disord 2016; 190:264–271. [Crossref]
  • 4. Onyike CU, Sheppard JME, Tschanz JT, et al. Epidemiology of apathy in older adults: the Cache County Study. Am J Geriatr Psychiatry 2007; 15:365–375. [Crossref]
  • 5. Geda YE, Roberts RO, Knopman DS, et al. Prevalence of neuropsychiatric symptoms in mild cognitive impairment and normal cognitive aging: population-based study. Arch General Psychiatry 2008; 65:1193–1198. [Crossref]
  • 6. Landes AM, Sperry SD, Strauss ME, Geldmacher DS. Apathy in Alzheimer's disease. J Am Geriatr Society 2001; 49:1700–1707. [Crossref]
  • 7. Mirakhur A, Craig D, Hart DJ, McLlroy SP, Passmore AP. Behavioural and psychological syndromes in Alzheimer's disease. Int J Geriatr Psychiatry 2004; 19:1035–1039. [Crossref]
  • 8. Lyketsos CG, Carrillo MC, Ryan JM, et al. Neuropsychiatric symptoms in Alzheimer's disease. Alzheimers Dement 2011; 7:532–539. [Crossref]
  • 9. Nobis L, Husain M. Apathy in Alzheimer's disease. Curr Opin Behav Sci 2018; 22:7–13. [Crossref]
  • 10. Le Heron C, Apps MAJ, Husain M. The anatomy of apathy: A neurocognitive framework for amotivated behaviour. Neuropsychologia 2018; 118:54–67. [Crossref]
  • 11. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (4th ed., Text Revision) 2000; Washington, DC.
  • 12. Morris J. The clinical dementia rating (CDR): current version and scoring rules. Neurology 1993; 43:2412–2414. [Crossref]
  • 13. Fazekas F, Barkhof F, Wahlund LO, et al. CT and MRI rating of white matter lesions. Cerebrovasc Dis 2002; 13:31–36. [Crossref]
  • 14. Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory comprehensive assessment of psychopathology in dementia. Neurology 1994; 44:2308–2314. [Crossref]
  • 15. Akça-Kalem Ş, Hanağası H, Cummings JL, Gürvit H. Validation study of the Turkish translation of the Neuropsychiatric Inventory (NPI). 21st International Conference of Alzheimer’s Disease International 2005 Istanbul, Turkey. Abstract Book P47, p. 58.
  • 16. Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State” A practical method for grading the cognitive state of patients for the clinician. J Psychiatriy Res 1975; 12;189–198. [Crossref]
  • 17. Gurgen C, Ertan T, Eker E. Standardize Mini Mental Test’in Türk toplumunda hafif demans tanısında geçerlilik ve güvenilirliği. Türk Psikiyatri Dergisi 2002; 13:273–281.
  • 18. Yesavage JA, Brink TL, Rose TL, et al. Development and validation of a geriatric depression screening scale: a preliminary report. J Psychiatry Res 1982; 17:37–49. [Crossref]
  • 19. Ertan T. Geriatrik Depresyon Ölçeği ile Kendini Değerlendirme Depresyon Ölçeği'nin 60 yaş üzeri Türk popülasyonunda geçerlilik ve güvenilirliği. Uzmanlık tezi 1996; İstanbul Üniversitesi Cerrahpaşa Tıp Fakültesi Psikiyatri Anabilim Dalı, İstanbul.
  • 20. Marin RS, Biedrzycki RC, Firinciogulları S. Reliability and validity of apathy evaluation scale. J Psychiatry Res 1991; 38:143–162. [Crossref]
  • 21. Gülseren Ş, Altun Ç, Erol A, Aydemir Ö, Çelebisoy M, Kültür S. Apati değerlendirme ölçeği Türkçe formunun geçerlilik ve güvenirlik çalışması. Nöropsikiyatri Arşivi 2001; 38:142–150.
  • 22. Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106:1125–1165. [Crossref]
  • 23. Nickerson LD, Smith SM, Öngür D, Beckman CF. Using dual regression to investigate network shape and amplitude in functional connectivity analyses. Frontiers in Neuroscience 2017; 11:115. [Crossref]
  • 24. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localization in cluster inference. Neuroimage 2009; 44:83–98. [Crossref]
  • 25. Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002; 15:870–878. [Crossref]
  • 26. Rilling JK, Seligman RA. A quantitative morphometric comparative analysis of the primate temporal lobe. J of Human Evolution 2002; 42:505–533. [Crossref]
  • 27. Delgado MR, Miller MM, Inati S, Phelps EA. An fMRI study of reward-related probability learning. Neuroimage 2005; 24:862–873. [Crossref]
  • 28. Fan L, Li H, Zhuo J, et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb Cortex 2016; 26:3508–3526. [Crossref]
  • 29. Stevens FL, Hurley RA, Taber KH. Anterior cingulate cortex: unique role in cognition and emotion. J Clin Neuropsychiatry 2011; 23:120–125. [Crossref]
  • 30. Smith MS, Fox PT, Miller KL, et al. Correspondence of the brain's functional architecture during activation and rest. PNAS 2009; 106:13040–13045. [Crossref]
  • 31. Vogt BA, Palomero-Gallagher N. Cingulate cortex In: Mai JK&Paxinos G, eds. The human nervous system. Amsterdam: Elsevier 2012; 943–987. [Crossref]
  • 32. Vogt BA. Structural organization of cingulate cortex: areas, neurons, and somatodendritic transmitter receptors In: Vogt BA&Gabriel M, eds. Neurobiology of cingulate cortex and limbic thalamus: A comprehensive handbook, Birkhauser Boston 1993; 19–70. [Crossref]
  • 33. Vogt BA, Sikes RW. The medial pain system, cingulate cortex, and parallel processing of nociceptive information. In: Meyer EA&Saper CB, eds. Progress in Brain Research, Elsevier Science 2000; 223–232. [Crossref]
  • 34. Apps MA Rushworth MF, Chang SW. The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron 2016; 90:692–707. [Crossref]
  • 35. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing 1990; 13:266–271. [Crossref]
  • 36. Haber SN. Anatomy and connectivity of the reward circuit. In: Dreher JC& Tremblay L, eds. Decision neuroscience: An integrative perspective. San Diego, CA, US: Elsevier Academic Press 2017; 3–19. [Crossref]
  • 37. Beckmann M, Johansen-Berg H, Rushworth MFS. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J Neuroscience 2009; 29:1175–1190. [Crossref]
  • 38. Lockwood PL, Wittmann MK, Apps MAJ, et al. Neural mechanisms for learning self and other ownership. Nature Communications 2018; 4747:1–11. [Crossref]
  • 39. Migneco O, Benoit M, Koulibaly PM, et al. Perfusion brain SPECT and statistical parametric mapping analysis indicate that apathy is a cingulate syndrome: a study in Alzheimer's disease and nondemented patients. Neuroimage 2001; 13:896–902. [Crossref]
  • 40. Schroeter ML, Vogt B, Frisch S, et al. Dissociating behavioral disorders in early dementia—An FDG-PET study. Psychiatry Res Neuroimaging 2011; 194:235–244. [Crossref]
  • 41. Moretti R, Signori R. Neural correlates for apathy: frontal-prefrontal and parietal cortical- subcortical circuits. Front Aging Neurosci 2016; 9:1–13. [Crossref]
  • 42. Sturm VE, Sollberger M, Seeley WW, et al. Role of right pregenual anterior cingulate cortex in self-conscious emotional reactivity. Soc Cogn Affect Neurosci 2012; 8:468–474. [Crossref]
  • 43. Bruen PD, McGeown WJ, Shanks MF, Venneri A. Neuroanatomical correlates of neuropsychiatric symptoms in Alzheimer's disease. Brain 2008; 131:2455–2463. [Crossref]
  • 44. Moon Y, Moon WJ, Kim H, Han SH. Regional atrophy of the insular cortex is associated with neuropsychiatric symptoms in Alzheimer's disease patients. Eur Neurol 2014; 71:223–229. [Crossref]
  • 45. Kim JW, Lee DY, Choo IH, et al. Microstructural alteration of the anterior cingulum is associated with apathy in Alzheimer disease. Am J Geriatr Psychiatry 2011; 19:644–653. [Crossref]
  • 46. Mori T, Shimada H, Shinotoh H, et al. Apathy correlates with prefrontal amyloid β deposition in Alzheimer's disease. J Neurol Neurosurg Psychiatry 2014; 85, 449–455. [Crossref]
  • 47. Jones SA, De Marco M., Manca R, et al. Altered frontal and insular functional connectivity as pivotal mechanisms for apathy in Alzheimer’s disease. Cortex 2019; 119. [Crossref]
  • 48. Munro CE, Donovan NJ, Guercio BJ, et al. Neuropsychiatric symptoms and functional connectivity in mild cognitive impairment. J Alzheimers Dis 2015; 46:727–735. [Crossref]
  • 49. Duffy J. Apathy in neurologic disorders. Current Psychiatry Reports 2000; 2:434–439. [Crossref]
  • 50. Levy R, Dubois B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cerebral Cortex 2006; 16:916–928. [Crossref]
APA Buyukgok D, Bayraktaroglu Z, Buker H, Baral Kulaksızoğlu I, Gürvit H (2020). Resting-state fMRI analysis in apathetic Alzheimer's disease. , 363 - 369. 10.5152/dir.2019.19445
Chicago Buyukgok Deniz,Bayraktaroglu Zubeyir,Buker Hediye Seda,Baral Kulaksızoğlu Işın,Gürvit Hakan Resting-state fMRI analysis in apathetic Alzheimer's disease. (2020): 363 - 369. 10.5152/dir.2019.19445
MLA Buyukgok Deniz,Bayraktaroglu Zubeyir,Buker Hediye Seda,Baral Kulaksızoğlu Işın,Gürvit Hakan Resting-state fMRI analysis in apathetic Alzheimer's disease. , 2020, ss.363 - 369. 10.5152/dir.2019.19445
AMA Buyukgok D,Bayraktaroglu Z,Buker H,Baral Kulaksızoğlu I,Gürvit H Resting-state fMRI analysis in apathetic Alzheimer's disease. . 2020; 363 - 369. 10.5152/dir.2019.19445
Vancouver Buyukgok D,Bayraktaroglu Z,Buker H,Baral Kulaksızoğlu I,Gürvit H Resting-state fMRI analysis in apathetic Alzheimer's disease. . 2020; 363 - 369. 10.5152/dir.2019.19445
IEEE Buyukgok D,Bayraktaroglu Z,Buker H,Baral Kulaksızoğlu I,Gürvit H "Resting-state fMRI analysis in apathetic Alzheimer's disease." , ss.363 - 369, 2020. 10.5152/dir.2019.19445
ISNAD Buyukgok, Deniz vd. "Resting-state fMRI analysis in apathetic Alzheimer's disease". (2020), 363-369. https://doi.org/10.5152/dir.2019.19445
APA Buyukgok D, Bayraktaroglu Z, Buker H, Baral Kulaksızoğlu I, Gürvit H (2020). Resting-state fMRI analysis in apathetic Alzheimer's disease. Diagnostic and Interventional Radiology, 26(4), 363 - 369. 10.5152/dir.2019.19445
Chicago Buyukgok Deniz,Bayraktaroglu Zubeyir,Buker Hediye Seda,Baral Kulaksızoğlu Işın,Gürvit Hakan Resting-state fMRI analysis in apathetic Alzheimer's disease. Diagnostic and Interventional Radiology 26, no.4 (2020): 363 - 369. 10.5152/dir.2019.19445
MLA Buyukgok Deniz,Bayraktaroglu Zubeyir,Buker Hediye Seda,Baral Kulaksızoğlu Işın,Gürvit Hakan Resting-state fMRI analysis in apathetic Alzheimer's disease. Diagnostic and Interventional Radiology, vol.26, no.4, 2020, ss.363 - 369. 10.5152/dir.2019.19445
AMA Buyukgok D,Bayraktaroglu Z,Buker H,Baral Kulaksızoğlu I,Gürvit H Resting-state fMRI analysis in apathetic Alzheimer's disease. Diagnostic and Interventional Radiology. 2020; 26(4): 363 - 369. 10.5152/dir.2019.19445
Vancouver Buyukgok D,Bayraktaroglu Z,Buker H,Baral Kulaksızoğlu I,Gürvit H Resting-state fMRI analysis in apathetic Alzheimer's disease. Diagnostic and Interventional Radiology. 2020; 26(4): 363 - 369. 10.5152/dir.2019.19445
IEEE Buyukgok D,Bayraktaroglu Z,Buker H,Baral Kulaksızoğlu I,Gürvit H "Resting-state fMRI analysis in apathetic Alzheimer's disease." Diagnostic and Interventional Radiology, 26, ss.363 - 369, 2020. 10.5152/dir.2019.19445
ISNAD Buyukgok, Deniz vd. "Resting-state fMRI analysis in apathetic Alzheimer's disease". Diagnostic and Interventional Radiology 26/4 (2020), 363-369. https://doi.org/10.5152/dir.2019.19445