Yıl: 2020 Cilt: 7 Sayı: 3 Sayfa Aralığı: 1131 - 1139 Metin Dili: Türkçe DOI: 10.31202/ecjse.742887 İndeks Tarihi: 26-12-2020

Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi

Öz:
Bu çalışmada, Al-MgO kompozitler toz metalurjisi yöntemiyle üretilmiştir. Kompozitlerde MgOgüçlendirici olarak ağırlıkça %10 oranında ilave edilmiş olup güçlendiricinin ortalama çapı <40 nmboyutundadır. Kompozitler, karıştırma, sıkıştırma ve 5 saat sinterleme süresi ile farklı sinterleme sıcaklıklarına(500 oC – 550 oC – 600 oC) tabi tutulmuşlardır. Kompozitlerin mikroyapıları optik mikroskop ve taramalıelektron mikroskobu (SEM) aracılığıyla incelenmiştir. Kompozitlerin teorik yoğunlukları karışım kanununa göreve ölçülen yoğunlukları Arşimed prensibine göre araştırılmıştır. Teorik yoğunluk değerleri ve ölçülen yoğunlukdeğerleri kullanılarak ürünlerin porozite içeriği belirlenmiştir. Ayrıca kompozitlere sertlik testi uygulanarakmekanik özellikleri araştırılmıştır. MgO nano partikül ilavesi, alüminyum matrisinin sertliğini önemli derecedearttırmıştır. Maksimum sertlik değeri Al-MgO kompozitte 104 HB olarak ölçülmüştür. Tane büyümesinin,sertlikte liner büyümeyi engellediği görülmüştür. Artan sıcaklıkla kompozitlerde tane büyümesi meydanagelmekte, porozite içeriği azalmakta ve sertlikte farklı değerler elde edilmektedir. Maksimum relatif yoğunluk600 °C sinterleme sıcaklığı ile elde edilmiştir.
Anahtar Kelime:

Effect of Sintering Temperature on the Properties of Al-MgO Composites Fabricated by Powder Metallurgy Method

Öz:
In this study, Al - MgO composites were produced by powder metallurgy method. In composites, MgO was added as a reinforcement at a rate of 10% by weight, and the average diameter of the reinforcement was <40 nm. The composites are subjected to mixing, compression and sintering time of 5 hours with different sintering temperatures (500 °C – 550 °C – 600 °C). Microstructures of composites were examined by optical microscope and scanning electron microscope (SEM). The theoretical densities of the composites were investigated according to the mixture law and the measured densities according to the Archimedes principle. Porosity content of the composites was determined using theoretical density values and measured density values. The mechanical property of composites was investigated by applying hardness test. Hardness of Al matrix improved dramatically with addition of MgO nano-particles. The maximum hardness value was obtained in AlMgO composite as 104 HB. Grain growth has been shown to inhibit liner growth in hardness. Grain growth occurs in composites with increasing temperature, porosity content decreases and different values are obtained in hardness. The maximum relative density was obtained with sintering temperature of 600 oC.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Callister Jr, W.D. and D.G. Rethwisch, Fundamentals of materials science and engineering: an integrated approach. 2012: John Wiley & Sons.
  • [2]. Callister, W. and D. Rethwisch, The structure of crystalline solids. Materials science and engineering: an intr oduction. New York: John Wiley & Sons, Inc, 2007: p. 38-79.
  • [3]. Groover, M.P., Fundamentals of modern manufacturing: materials processes, and systems. 2007: John Wiley & Sons.
  • [4]. -Al2O3 Kısa Fiber Takviyeli LM 13 Alüminyum Alaşımının Eğilme Dayanımına Yaşlandırma Isıl İşeminin Etkisi. El-Cezeri Journal of Science and Engineering. 6(1): p. 175-180.
  • [5]. Chawla, N. and Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites. Advanced engineering materials, 2001. 3(6): p. 357-370.
  • [6]. EKREM, M., Hekzagonal Bor Nitrür Nanoplate-Nano Ag/Epoksi Kompozitler: Üretimi, Mekanik ve Termal Özellikleri. El-Cezeri Journal of Science and Engineering. 6(3): p. 585- 593.
  • [7]. Eltaher, M., et al., Effect of Al2O3 particles on mechanical and tribological properties of Al– Mg dual-matrix nanocomposites. Ceramics International, 2020. 46(5): p. 5779-5787.
  • [8]. Harish, P., et al., Characterization of Mechanical and Tribological Properties of Aluminium alloy based Hybrid Composites Reinforced with Cotton Shell Ash and Silicon Carbide. 2019.
  • [9]. Kumar, V.M. and C. Venkatesh, A comprehensive review on material selection, processing, characterization and applications of aluminium metal matrix composites. Materials Research Express, 2019. 6(7): p. 072001.
  • [10]. Namdeo, D.S., G. Subhash, and V. Jagadale, An Experimental Study of Effect of Silicon Carbide on Mechanical Properties of Aluminium Based Composite, in Techno-Societal 2018. 2020, Springer. p. 823-830.
  • [11]. Ozden, S., R. Ekici, and F. Nair, Investigation of impact behaviour of aluminium based SiC particle reinforced metal–matrix composites. Composites Part A: Applied Science and Manufacturing, 2007. 38(2): p. 484-494.
  • [12]. Rajaravi, C. and P. Lakshminarayanan, Experimental and Finite Element Analysis of Fracture Toughness on Al/SiCp MMCs in Different Conditions. International Journal of Engineering and Management Research (IJEMR), 2015. 5(6): p. 320-324.
  • [13]. Reddy, A.P., P.V. Krishna, and R. Rao, Mechanical and Wear properties of aluminum-based nanocomposites fabricated through ultrasonic assisted stir casting. Journal of Testing and Evaluation, 2020. 48(4).
  • [14]. Song, Y., et al., Effect of carbon-fiber powder on friction and wear properties of coppermatrix composites. Materials Science and Technology, 2020. 36(1): p. 92-99.
  • [15]. Rosso, M., Ceramic and metal matrix composites: Routes and properties. Journal of materials processing technology, 2006. 175(1-3): p. 364-375.
  • [16]. Manu, K.S., et al., Liquid metal infiltration processing of metallic composites: a critical review. Metallurgical and Materials Transactions B, 2016. 47(5): p. 2799-2819.
  • [17]. Talaş, Ş. and G. Oruç, Characterization of TiC and TiB2 reinforced Nickel Aluminide (NiAl) based metal matrix composites cast by in situ vacuum suction arc melting. Vacuum, 2020. 172: p. 109066.
  • [18]. Cuevas, A.C., et al., Metal matrix composites: wetting and infiltration. 2018: Springer.
  • [19]. Hashim, J., L. Looney, and M. Hashmi, Metal matrix composites: production by the stir casting method. Journal of materials processing technology, 1999. 92: p. 1-7.
  • [20]. Evangelista, E. and S. Spigarelli, Constitutive equations for creep and plasticity of aluminum alloys produced by powder metallurgy and aluminum-based metal matrix composites. Metallurgical and materials transactions A, 2002. 33(2): p. 373-381.
  • [21]. Rajan, T., R. Pillai, and B. Pai, Reinforcement coatings and interfaces in aluminium metal matrix composites. Journal of materials science, 1998. 33(14): p. 3491-3503.
  • [22]. Abdizadeh, H. and M.A. Baghchesara, Investigation on mechanical properties and fracture behavior of A356 aluminum alloy based ZrO2 particle reinforced metal-matrix composites. Ceramics International, 2013. 39(2): p. 2045-2050.
  • [23]. Dash, K., B.C. Ray, and D. Chaira, Synthesis and characterization of copper–alumina metal matrix composite by conventional and spark plasma sintering. Journal of Alloys and compounds, 2012. 516: p. 78-84.
  • [24]. Mohan, B., A. Rajadurai, and K. Satyanarayana, Electric discharge machining of Al–SiC metal matrix composites using rotary tube electrode. Journal of materials processing technology, 2004. 153: p. 978-985.
  • [25]. Shirvanimoghaddam, K., et al., Carbon fiber reinforced metal matrix composites: Fabrication processes and properties. Composites Part A: Applied Science and Manufacturing, 2017. 92: p. 70-96.
  • [26]. Yang, Y., J. Lan, and X. Li, Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Materials Science and Engineering: A, 2004. 380(1-2): p. 378-383.
  • [27]. Zhao, Y.-T., et al., In situ (Al2O3+ Al3Zr) np/Al nanocomposites synthesized by magnetochemical melt reaction. Composites Science and Technology, 2008. 68(6): p. 1463-1470.
  • [28]. Zhao, H., et al., High strength and good ductility of casting Al–Cu alloy modified by PrxOy and LaxOy. Journal of Alloys and Compounds, 2011. 509(5): p. L43-L46.
  • [29]. Ravindran, P., et al., Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant. Materials & Design, 2013. 51: p. 448-456.
  • [30]. ME, N.K., H. Bhaskar, and T. Kiran, Characterization of Za-27 Alloy Reinforced with MgO Particles by Stir Casting Technique.
  • [31]. Pilarska, A.A., Ł. Klapiszewski, and T. Jesionowski, Recent development in the synthesis, modification and application of Mg (OH) 2 and MgO: A review. Powder Technology, 2017. 319: p. 373-407.
  • [32]. Franco-Madrid, J., et al., Microstructural and Mechanical Behavior in the Al 2024 Alloy Modified With Addition of CeO 2. Microscopy and Microanalysis, 2017. 23(S1): p. 1650- 1651.
  • [33]. Abdizadeh, H., R. Ebrahimifard, and M.A. Baghchesara, Investigation of microstructure and mechanical properties of nano MgO reinforced Al composites manufactured by stir casting and powder metallurgy methods: A comparative study. Composites Part B: Engineering, 2014. 56: p. 217-221.
  • [34]. Baghchesara, M.A., H. Abdizadeh, and H.R. Baharvandi. Effects of MgO nano particles on microstructural and mechanical properties of aluminum matrix composite prepared via powder metallurgy route. in International Journal of Modern Physics: Conference Series. 2012. World Scientific.
  • [35]. Kemaloglu, S., G. Ozkoc, and A. Aytac, Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochimica Acta, 2010. 499(1–2): p. 40-47.
  • [36]. Martone, A., et al., Reinforcement efficiency of multi-walled carbon nanotube/epoxy nano composites. Composites science and technology, 2010. 70(7): p. 1154-1160.
  • [37]. Yang, G.H., Nanotechnology and Advanced Materials. 2012: Trans Tech Publications Limited.
  • [38]. Yuan, Y. and T.R. Lee, Contact Angle and Wetting Properties, in Surface Science Techniques, G. Bracco and B. Holst, Editors. 2013, Springer Berlin Heidelberg. p. 3-34.
  • [39]. Vettivel, S., N. Selvakumar, and P.V. Ponraj, Mechanical behaviour of sintered Cu-5% W nano powder composite. Procedia engineering, 2012. 38: p. 2874-2880.
  • [40]. Abdallah, A., et al. Effect of alloy composition on the mechanical properties and fracture behavior of tungsten heavy alloys. in The International Conference on Applied Mechanics and Mechanical Engineering. 2014. Military Technical College.
APA ASLAN M, Kaya A, KURT İ, Ergul E, YILMAZ N (2020). Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. , 1131 - 1139. 10.31202/ecjse.742887
Chicago ASLAN Mikail,Kaya Abdulaziz,KURT İbrahim Halil,Ergul Engin,YILMAZ Necip Fazıl Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. (2020): 1131 - 1139. 10.31202/ecjse.742887
MLA ASLAN Mikail,Kaya Abdulaziz,KURT İbrahim Halil,Ergul Engin,YILMAZ Necip Fazıl Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. , 2020, ss.1131 - 1139. 10.31202/ecjse.742887
AMA ASLAN M,Kaya A,KURT İ,Ergul E,YILMAZ N Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. . 2020; 1131 - 1139. 10.31202/ecjse.742887
Vancouver ASLAN M,Kaya A,KURT İ,Ergul E,YILMAZ N Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. . 2020; 1131 - 1139. 10.31202/ecjse.742887
IEEE ASLAN M,Kaya A,KURT İ,Ergul E,YILMAZ N "Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi." , ss.1131 - 1139, 2020. 10.31202/ecjse.742887
ISNAD ASLAN, Mikail vd. "Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi". (2020), 1131-1139. https://doi.org/10.31202/ecjse.742887
APA ASLAN M, Kaya A, KURT İ, Ergul E, YILMAZ N (2020). Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. El-Cezerî Journal of Science and Engineering, 7(3), 1131 - 1139. 10.31202/ecjse.742887
Chicago ASLAN Mikail,Kaya Abdulaziz,KURT İbrahim Halil,Ergul Engin,YILMAZ Necip Fazıl Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. El-Cezerî Journal of Science and Engineering 7, no.3 (2020): 1131 - 1139. 10.31202/ecjse.742887
MLA ASLAN Mikail,Kaya Abdulaziz,KURT İbrahim Halil,Ergul Engin,YILMAZ Necip Fazıl Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. El-Cezerî Journal of Science and Engineering, vol.7, no.3, 2020, ss.1131 - 1139. 10.31202/ecjse.742887
AMA ASLAN M,Kaya A,KURT İ,Ergul E,YILMAZ N Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. El-Cezerî Journal of Science and Engineering. 2020; 7(3): 1131 - 1139. 10.31202/ecjse.742887
Vancouver ASLAN M,Kaya A,KURT İ,Ergul E,YILMAZ N Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi. El-Cezerî Journal of Science and Engineering. 2020; 7(3): 1131 - 1139. 10.31202/ecjse.742887
IEEE ASLAN M,Kaya A,KURT İ,Ergul E,YILMAZ N "Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi." El-Cezerî Journal of Science and Engineering, 7, ss.1131 - 1139, 2020. 10.31202/ecjse.742887
ISNAD ASLAN, Mikail vd. "Toz Metalurjisi Yöntemiyle Üretilen Al-MgO Kompozitlerin Özelliklerine Sinterleme Sıcaklığının Etkisi". El-Cezerî Journal of Science and Engineering 7/3 (2020), 1131-1139. https://doi.org/10.31202/ecjse.742887