Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi

Yıl: 2019 Cilt: 34 Sayı: 3 Sayfa Aralığı: 1517 - 1525 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.460549 İndeks Tarihi: 04-01-2021

Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi

Öz:
Otomobillerde kullanılan ve tampon üzerinde yer alan enerji sönümleyici profiller, önden ve arkadançarpmalı kazalarda ortaya çıkan kinetik enerjiyi deforme olarak sönümleyebilme yeteneğine sahip bağlantıelemanlarıdır. Bir kaza anında enerji sönümleyici profillerin maruz kaldıkları darbe kuvvetlerini yeterincesönümleyememesi bu kuvvetlerin direkt olarak araç içerisindeki yolcu bölümüne aktarılmasına sebebiyetverecektir. Yapılan çalışma kapsamında kare ve dairesel kesitli değişik geometrik özelliklere sahip on adetenerji sönümleyici tasarımı yapılmış ve farklı açılardaki yükler altında enerji sönümleme performanslarısonlu elemanlar yöntemi ile incelenmiştir. Enerji sönümleyici profiller 0°, 15° ve 30°’lik açıya sahip rijit birplaka ile 120 mm boyunca deformasyona uğratılmıştır. Her bir enerji sönümleyici profil için özgül enerjisönümleme ve ezilme kuvveti verimi değerleri incelenmiştir. Elde edilen sonuçlara göre her durumdadairesel kesitli enerji sönümleyicilerin daha yüksek performans sağladığı tespit edilmiştir.
Anahtar Kelime:

Investigation of performances of energy absorbing profiles having different geometries under oblique loads

Öz:
Energy absorbing profiles, which are placed on bumpers of automobiles, are fasteners that are capable to absorb the kinetic energy released during front and rear crashed accidents. In case of an accident, insufficient absorption of impact forces acting on energy absorber profiles will cause transmission of these impact forces to passenger compartment in vehicle. In the scope of the study, ten energy absorber with square and circular cross sectional having different geometrical specifications were designed and energy absorption performances of these absorbers were investigated with finite elements method under different load angles. Energy absorber profiles were deformed for 120 mm with a rigid plate having angles of 0°, 15° and 30°. The specific energy absorption and crash force efficiencies of each energy absorber were examined. As a result of the analyses, it was determined that the circular cross sectional energy absorbers have higher performance for each cases.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Marzbanrad J., Mehdikhanlo M., Pour A.S., An energy absorption comparison of square, circular, and elliptic steel and aluminum tubes under impact loading, Turkish Journal of Engineering and Environmental Sciences, 33 (3), 159-66, 2010.
  • 2. Öztürk İ., Kaya N., Otomobil ön tampon çarpışma analizi ve optimizasyonu, Uludağ University Journal of The Faculty of Engineering, 13 (1), 2008.
  • 3. Alexander J., An approximate analysis of the collapse of thin cylindrical shells under axial loading. The Quarterly Journal of Mechanics and Applied Mathematics, 13 (1), 10-5, 1960.
  • 4. Abramowicz W., Jones N., Dynamic axial crushing of square tubes, International Journal of Impact Engineering, 2 (2), 179-208, 1984.
  • 5. Guillow S., Lu G., Grzebieta R., Quasi-static axial compression of thin-walled circular aluminium tubes, International Journal of Mechanical Sciences, 43 (9), 2103-23, 2001.
  • 6. Al Galib D., Limam A., Experimental and numerical investigation of static and dynamic axial crushing of circular aluminum tubes, Thin-Walled Structures, 42 (8), 1103-37, 2001.
  • 7. Altin M., Kılınçkaya Ü., Acar E., Güler M.A., Investigation of combined effects of cross section, taper angle and cell structure on crashworthiness of multi-cell thin-walled tubes, International Journal of Crashworthiness, 1-16, 2017.
  • 8. Tarigopula V., Langseth M., Hopperstad OS., Clausen AH., Axial crushing of thin-walled high-strength steel sections, International Journal of Impact Engineering, 32 (5), 847-82, 2006.
  • 9. McGregor C.J., Vaziri R., Poursartip A., Xiao X., Simulation of progressive damage development in braided composite tubes under axial compression, Composites Part A: Applied Science and Manufacturing, 38 (11), 2247-59, 2007.
  • 10. Xiao X., Botkin M.E., Johnson N.L., Axial crush simulation of braided carbon tubes using MAT58 in LSDYNA, Thin-Walled Structures, 47 (6), 740-9, 2009.
  • 11. Zarei H., Kröger M., Multiobjective crashworthiness optimization of circular aluminum tubes, Thin-walled structures, 44 (3), 301-8, 2006;
  • 12. Huang X., Lu G., Yu TX., On the axial splitting and curling of circular metal tubes, International journal of mechanical sciences, 44 (11), 2369-91, 2002.
  • 13. Huang X., Lu G., Yu TX., Energy absorption in splitting square metal tubes, Thin-walled structures, 40 (2), 153- 65, 2002.
  • 14. Tran T., Hou S., Han X., Nguyen N., Chau M., Theoretical prediction and crashworthiness optimization of multi-cell square tubes under oblique impact loading, International Journal of Mechanical Sciences, 89, 177- 93,2014.
  • 15. Salehghaffari S., Tajdari M., Panahi M., Mokhtarnezhad F., Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading, Thin-Walled Structures, 48 (6), 379-90, 2010.
  • 16. Langseth M., Hopperstad O., Static and dynamic axial crushing of square thin-walled aluminium extrusions, International Journal of Impact Engineering, 18 (7-8), 949-68, 1996.
  • 17. Tarlochan F., Samer F., Hamouda A., Ramesh S., Khalid K., Design of thin wall structures for energy absorption applications: Enhancement of crashworthiness due to axial and oblique impact forces, Thin-Walled Structures, 71, 7-17, 2013.
  • 18. Nia AA., Parsapour M., Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections, Thin-Walled Structures, 74, 155-65, 2014.
  • 19. Zhang X., Zhang H., Energy absorption of multi-cell stub columns under axial compression, Thin-Walled Structures, 68, 156-63, 2013.
  • 20. Elmarakbi A., Long Y.X., MacIntyre J., Crash analysis and energy absorption characteristics of S-shaped longitudinal members, Thin-walled structures, 68, 65- 74, 2013.
  • 21. Ahmad Z., Thambiratnam D., Tan A., Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading, International Journal of Impact Engineering, 37 (5),475-88, 2010.
  • 22. Altin M., Güler M.A., Mert SK., The effect of percent foam fill ratio on the energy absorption capacity of axially compressed thin-walled multi-cell square and circular tubes, International Journal of Mechanical Sciences, 131, 368-79, 2017.
  • 23. Altin M., Acar E., Güler M.A., Investigation Foam filling options for crashworthiness optimization of thinwalled multi-tubular circular columns, Thin-Walled Structures, 131, 309-323, 2018.
  • 24. Hou S., Li Q., Long S., Yang X., Li W., Multiobjective optimization of multi-cell sections for the crashworthiness design, International Journal of Impact Engineering, 35 (11), 1355-67, 2008.
  • 25. Mirfendereski L., Salimi M., Ziaei-Rad S., Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings, International Journal of Mechanical Sciences, 50 (6), 1042-57, 2008.
  • 26. Qi C., Yang S., Crashworthiness and lightweight optimisation of thin-walled conical tubes subjectedto an oblique impact, International Journal of Crashworthiness, 19 (4), 334-51, 2014.
  • 27. Yang S., Qi C., Multiobjective optimization for empty and foam-filled square columns under oblique impact loading, International Journal of Impact Engineering, 54, 177-91, 2013.
  • 28. Qi C., Yang S., Dong F., Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading, Thin-Walled Structures, 59, 103-19, 2012.
  • 29. Gao Q., Wang L., Wang Y., Wang C., Crushing analysis and multiobjective crashworthiness optimization of foam-filled ellipse tubes under oblique impact loading, Thin-Walled Structures, 100, 105-12, 2016.
  • 30. Isaac C.W., Oluwole O., Energy absorption improvement of circular tubes with externally pressfitted ring around tube surface subjected under axial and oblique impact loading, Thin-Walled Structures, 109, 352-66, 2016.
  • 31. Djamaluddin F., Abdullah S., Ariffin A.K., Nopiah Z.M., Optimization of foam-filled double circular tubes under axial and oblique impact loading conditions, Thin-Walled Structures, 87, 1-11, 2015.
  • 32. Özer M., Altınkaynak A., Temiz V., Mutlu T., Dışpınar T., Özgen A., Yücel M., Dynamic analysis of frontloading washing machine using finite element method, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 773-780, 2016.
  • 33. Yaman K., Özcan M., Tekiner Z., Determination of the spinning parameters of AISI 304L stainless steel by using finite element method, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (1), 299-331, 2018.
  • 34. Aydın M., Köprülü U., A study of ball-end milling forces by finite element model with Lagrangian boundary of orthogonal cutting operation, Journal of the Faculty of Engineering and Architecture of Gazi University, 33 (2), 517-527, 2018.
  • 35. Beyen K., Damage simulation by finite element updating using vibration characteristics, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 403-415, 2017.
  • 36. Jin S.Y, Altenhof W., Comparison of the load/displacement and energy absorption performance of round and square AA6061-T6 extrusions under a cutting deformation mode, International Journal of Crashworthiness, 12 (3), 265-78, 2007.
  • 37. Wu S., Zheng G., Sun G., Liu Q., Li G., Li Q., On design of multi-cell thin-walled structures for crashworthiness, International Journal of Impact Engineering, 88, 102- 117, 2016.
APA Altin M (2019). Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. , 1517 - 1525. 10.17341/gazimmfd.460549
Chicago Altin Murat Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. (2019): 1517 - 1525. 10.17341/gazimmfd.460549
MLA Altin Murat Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. , 2019, ss.1517 - 1525. 10.17341/gazimmfd.460549
AMA Altin M Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. . 2019; 1517 - 1525. 10.17341/gazimmfd.460549
Vancouver Altin M Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. . 2019; 1517 - 1525. 10.17341/gazimmfd.460549
IEEE Altin M "Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi." , ss.1517 - 1525, 2019. 10.17341/gazimmfd.460549
ISNAD Altin, Murat. "Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi". (2019), 1517-1525. https://doi.org/10.17341/gazimmfd.460549
APA Altin M (2019). Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(3), 1517 - 1525. 10.17341/gazimmfd.460549
Chicago Altin Murat Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, no.3 (2019): 1517 - 1525. 10.17341/gazimmfd.460549
MLA Altin Murat Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.34, no.3, 2019, ss.1517 - 1525. 10.17341/gazimmfd.460549
AMA Altin M Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2019; 34(3): 1517 - 1525. 10.17341/gazimmfd.460549
Vancouver Altin M Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2019; 34(3): 1517 - 1525. 10.17341/gazimmfd.460549
IEEE Altin M "Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34, ss.1517 - 1525, 2019. 10.17341/gazimmfd.460549
ISNAD Altin, Murat. "Değişik geometrilere sahip enerji sönümleyici profillerin açılı yükler altında performanslarının incelenmesi". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/3 (2019), 1517-1525. https://doi.org/10.17341/gazimmfd.460549