Yıl: 2019 Cilt: 34 Sayı: 4 Sayfa Aralığı: 1957 - 1973 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.571644 İndeks Tarihi: 05-01-2021

İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler

Öz:
Akıllı araç kavramının elektrikli araçlar ile ivme kazanması ve sonrasında otonom araç teknolojilerine olanilginin artmasıyla birlikte insansız kara aracı (İKA) çalışmaları ve yatırımları hız kazanmaktadır. İnsansızkara araçları karmaşık bir yapıya ve teknolojiye sahip olmalarına rağmen, kullanımlarıyla beraber birçokavantajı beraberlerinde getirmektedirler. İnsana özgü özelliklere sahip olmamaları (uyku, yorgunluk, sinirvb.), hızlı tepki verebilmeleri ve koşullara göre olasılıkları hesaplayıp en doğru kararı seçebilmeleriİKA’ların en önemli avantajlarıdır. Yapılan çalışmada, haritalandırma, konumlandırma, yol arama ve takipetme kabiliyetlerine sahip bir İKA geliştirilmiştir. Belirli bir harita, kroki veya kat planı bulunmayan birarazide; İKA’nın açık ve kapalı alanda otonom sürüş geliştirme kabiliyeti yapılan deneyler iledoğrulanmıştır. Çalışmada İKA tasarımı için gereksinim duyulan aşamalar, problemler, çözüm teknikleri,sonuçlar ve öneriler sistematik bir yaklaşım ile sunulmuştur.
Anahtar Kelime:

An integrated approach to development of unmanned ground vehicle: design, analysis, implementation and suggestions

Öz:
As the intelligent vehicle concept accelerated with electric vehicles, and then interest in autonomous vehicle technologies increased, investments on unmanned ground vehicle (UGV) studies also accelerated. Unmanned ground vehicles, despite their complex structure and technology, bring many advantages with their use. The most important advantages of UGVs are that they do not have human-specific features (sleepiness, fatigue, anger, etc.), react faster, and reach a decision by calculating possibilities according to the conditions. In this study, a UGV has been developed, which has the ability to navigate to a selfdetermined or unknown area, ability of mapping, localization, trajectory detection and tracking, detection of obstacles and finding a new path to avoid collisions with these obstacles. In an area without a specific map, skecth or floor plan, UGV's autonomous driving capability in indoor and outdoor, has been verified by the experiments. The phases, problems, solution techniques and results required for UGV design are presented with a systematic approach in this study.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Bacik J., Durovsky F., Biro M., Kyslan K, Perdukova D., Padmanaban S., Pathfinder–development of automated guided vehicle for hospital logistics, IEEE Access, 5, 26892-26900, 2017.
  • 2. Luettel T., Himmelsbach M., Wuensche H., Autonomous ground vehicles: concepts and a path to the future, Proc. IEEE, 100, 1831-1839, 2012.
  • 3. Dickmanns E.D., Developing the sense of vision for autonomous road vehicles at UniBwM, Computer, 50 (12), 24-31, 2017.
  • 4. Bimbraw K., Autonomous cars: Past, Present and Future a review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology, 12th International Conference on Informatics in Control, Automation and Robotics, Colmar, France, 21-23 July 2015.
  • 5. Maxwell P., Larkin D., Lowrance C., Turning remotecontrolled military systems into autonomous force multipliers, IEEE Potentials, 32 (6), 39-43, 2013.
  • 6. Weiskircher T., Wang Q., Ayalew B., Predictive guidance and control framework for (semi-) autonomous vehicles in public traffic, IEEE Trans. Control Syst. Technol., 25 (6), 2034-2046, 2017.
  • 7. Young S.H., Mazzuchi T.A., Sarkani S., A framework for predicting future system performance in autonomous unmanned ground vehicles, IEEE Trans. Syst. Man Cybern., 47 (7), 1192-1206, 2017.
  • 8. Karlsson R., Gustafsson F., The future of automotive localization algorithms: available, reliable, and scalable localization: anywhere and anytime, IEEE Signal Process Mag., 34 (2), 60-69, 2017.
  • 9. Broggi A., Buzzoni M., Debattisti S., Grisleri P., Laghi M.C., Medici P., Versari P., Extensive tests of autonomous driving technologies, IEEE Trans. Intell. Transp. Syst., 14 (3), 1403-1415, 2013.
  • 10. Kilic A., Kapucu S., Design and construction of a modular reconfigurable robot module OMNIMO, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 521-530, 2016.
  • 11. Viboonchaicheep P., Shimada A., Kosaka Y., Position Rectification Control for Mecanum Wheeled OmniDirectional Vehicles, The 29th Annual Conference of the IEEE Industrial Electronics Society, Roanoke, VA, USA, 2-6 Nov. 2003.
  • 12. Abouzahir M., Elouardi A., Latif R., Bouaziz S., Tajer A., Embedding SLAM algorithms: has it come of age?, Robotics and Autonomous Systems, Rob. Auton. Syst., 100, 14-26, 2018.
  • 13. Akkaya A.E., Talu M.F., Extended kalman filter based IMU sensor fusion application for leakage position detection in water pipelines, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4), 1393-1404, 2017.
  • 14. Aoyama M., Computing for the next-generation automobile, Computer, 45 (6), 32-37, 2012.
  • 15. Silva O.D., Mann G.K.I, Gosine R.G., An ultrasonic and vision-based relative positioning sensor for multirobot localization, IEEE Sens. J., 15 (3), 1716-1726, 2015.
  • 16. Wyglinski A.M., Huang X., Padir T., Lai L., Eisenbarth T.R., Venkatasubramanian K., Security of autonomous systems employing embedded computing and sensors, IEEE Micro, 33 (1), 80-86, 2013.
  • 17. Tsai C.C., Wu H.L., Nonsingular Terminal Sliding Control Using Fuzzy Wavelet Networks for Mecanum Wheeled Omni-Directional Vehicles, IEEE International Conference on Fuzzy Systems, Barcelona, Spain, 18-23 July 2010.
  • 18. Tlale N., Villiers M.D., Kinematics and Dynamics Modelling of a Mecanum Wheeled Mobile Platform, 15th International Conference on Mechatronics and Machine Vision in Practice, Auckland, New Zealand, 2- 4 Dec. 2008.
  • 19. Zhao D., Deng X., Yi J., Motion and internal force control for omnidirectional wheeled mobile robots, IEEE/ASME Trans. Mechatron., 14 (3), 382-387, 2009.
  • 20. Atila B., Mungan T.E., Kivanc O.C., Different Filter Approaches and Performance Analysis of Fundamental Sensors in Autonomous Ground Vehicles, 24th Signal Processing and Communication Application Conference, Zonguldak, Turkey, 16-19 May 2016.
  • 21. Gomez-Gil J., Ruiz-Gonzalez R., Alonso-Garcia S., Gomez-Gil F.J., A kalman filter implementation for precision improvement in low-cost GPS positioning of tractors, Sensors, 13 (11), 15307-15323, 2013.
  • 22. Hidayat A.A., Arief Z., Happyanto D.C., Mobile Application With Simple Moving Average Filtering for Monitoring Finger Muscles Therapy of Post-Stroke People, International Electronics Symposium, Surabaya, Indonesia, 29-30 Sept. 2015.
  • 23. Hui X.F., Wu Y.J., Research on Simple Moving Average Trading System Based on SVM, International Conference on Management Science and Engineering, Dallas, TX, USA, 20-22 Sept. 2012.
  • 24. Demosthenous P., Nicolaou, N., Georgiou J., A Hardware-Efficient Lowpass Filter Design for Biomedical Applications, IEEE Biomedical Circuits and Systems Conference, Paphos, Cyprus, 3-5 Nov. 2010.
  • 25. Widrow B., Adaptive filters, Aspects Netw. Syst. Theory, 563-586, 1971.
  • 26. Bresson G., Alsayed Z., Yu L., Glaser S., Simultaneous localization and mapping: a survey of current trends in autonomous driving, IEEE Trans. Intell. Veh., 2 (3), 194-220, 2017.
  • 27. Cadena C., Carlone L., Carrillo H., Latif Y., Scaramuzza D., Neira J., Reid I., Leonard J.J., Past, present, and future of simultaneous localization and mapping: toward the robust-perception age, IEEE Trans. Rob., 32 (6), 1309-1332, 2016.
  • 28. Temeltas H., Kavak D., SLAM for robot navigation, IEEE A&E Syst. Mag., 23 (12), 16-19, 2008.
  • 29. Karaoğuz H., Erkent Ö., Bayram H., Bozma I., Tek robottan çoklu robotlara ortam haritalama, EMO Bilimsel Dergi, 2 (4), 105-118, 2012.
  • 30. Khan S., Wollherr D., Buss M., Modeling laser intensities for simultaneous localization and mapping, IEEE Rob. Autom. Lett., 1 (2), 692-699, 2016.
  • 31. Shen S., Michael N., Kumar V., Obtaining liftoff indoors: autonomous navigation in confined indoor environments, IEEE Rob. Autom. Mag., 20 (4), 40-48, 2013.
  • 32. Wang J., Zhang X., Gao Q., Ma X., Feng X., Wang H., Device-free simultaneous wireless localization and activity recognition with wavelet feature, IEEE Trans. Veh. Technol., 66 (2), 1659-1669, 2017.
  • 33. Dine A., Elouardi A., Vincke B., Bouaziz S., Graphbased simultaneous localization and mapping: computational complexity reduction on a multicore heterogeneous architecture, IEEE Rob. Autom. Mag., 23 (4), 160-173, 2016.
  • 34. Golan Y., Edelman S., Shapiro A., Rimon E., Online robot navigation using continuously updated artificial temperature gradients, IEEE Rob. Autom. Lett., 2 (3), 1280-1287, 2017.
  • 35. Wang X., Zhang C., Liu F., Dong Y., Xu X., Exponentially weighted particle filter for simultaneous localization and mapping based on magnetic field measurements, IEEE Trans. Instrum. Meas., 66 (7), 1658-1667, 2017.
  • 36. Shiozaki T., Dissanayake G., Eliminating scale drift in monocular SLAM using depth from defocus, IEEE Rob. Autom. Lett., 3 (1), 581-587, 2018.
  • 37. Sun Q., Yuan J., Zhang X., Sun F., RGB-D SLAM in indoor environments with STING-based plane feature extraction, IEEE/ASME Trans. Mechatron., PP (99), 2017.
  • 38. Santos J.M., Portugal D., Rocha R.P., An Evaluation of 2D SLAM Techniques Available in Robot Operating System, IEEE International Symposium on Safety, Security, and Rescue Robotics, Linkoping, Sweden, 21- 26 Oct. 2013.
  • 39. Kohlbrecher S., Stryk O.V., Meyer J., Klingauf U., A Flexible and Scalable SLAM System With Full 3D Motion Estimation, IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1- 5 Nov. 2011.
  • 40. Duymaz E., Oguz A.E., Temeltas H., Particle flow filter as a novel state estimation method for simultaneous localization and mapping problem, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (4), 1255-1270, 2017.
  • 41. Karamat T.B., Lins R.G., Givigi S.N., Noureldin A., Novel EKF-based vision/inertial system integration for improved navigation, IEEE Trans. Instrum. Meas., 67 (1), 116-125, 2018.
  • 42. Huang S., Dissanayake G., Convergence and consistency analysis for extended kalman filter based SLAM, IEEE Trans. Rob., 23 (5), 1036-1049, 2007.
  • 43. Hu C., Wang R., Yan F., Chen N., Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles, IEEE Trans. Veh. Technol., 65 (6), 4033-4043, 2016.
  • 44. Hajjaji A.E., Bentalba S., Fuzzy path tracking control for automatic steering of vehicles, Rob. Auton. Syst., 43 (4), 203-213, 2003.
  • 45. Lenain R., Thuilot B., Cariou C., Martinet P., High accuracy path tracking for vehicles in presence of sliding: Application to farm vehicle automatic guidance for agricultural tasks, Auton. Robot, 21 (1), 79-97, 2006.
  • 46. Wang R., Hu C., Yan F., Chadli M., Composite nonlinear feedback control for path following of fourwheel independently actuated autonomous ground vehicles, IEEE Trans. Intell. Transp. Syst., 17 (7), 2063- 2074, 2016.
  • 47. Yoon S., Yoon S.E., Lee U., Shim D.H., Recursive path planning using reduced states for car-like vehicles on grid maps, IEEE Trans. Intell. Transp. Syst., 16 (5), 2797-2813, 2015.
  • 48. Wang Y., Li X., Ruiz R., An exact algorithm for the shortest path problem with position-based learning effects, IEEE Trans. Syst. Man Cybern., 47 (11), 3037- 3049, 2017.
  • 49. Lin M., Yuan K., Shi C., Wang Y., Path Planning of Mobile Robot Based on Improved A∗ Algorithm, 29th Chinese Control And Decision Conference, Chongqing, China, 28-30 May 2017.
  • 50. Silva J.B.B., Siebra C.A., Nascimento T.P., A New Cost Function Heuristic Applied to A* Based Path Planning in Static and Dynamic Environments, 12th Latin American Robotics Symposium, Uberlandia, Brazil, 29- 31 Oct. 2015.
  • 51. Ozguner U., Acarman T., Redmill K., Autonomous Ground Vehicles, Artech Theory, 201-215, 2011.
  • 52. Ge S.S., Lewis F.L., Autonomous Mobile Robots: Sensing, Control, Decision Making and Applications, Taylor & Francis Group, 2006.
APA Kivanc O, Mungan T, atila b, Tosun G (2019). İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. , 1957 - 1973. 10.17341/gazimmfd.571644
Chicago Kivanc Omer Cihan,Mungan Tahir Eren,atila berkin,Tosun Gurkan İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. (2019): 1957 - 1973. 10.17341/gazimmfd.571644
MLA Kivanc Omer Cihan,Mungan Tahir Eren,atila berkin,Tosun Gurkan İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. , 2019, ss.1957 - 1973. 10.17341/gazimmfd.571644
AMA Kivanc O,Mungan T,atila b,Tosun G İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. . 2019; 1957 - 1973. 10.17341/gazimmfd.571644
Vancouver Kivanc O,Mungan T,atila b,Tosun G İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. . 2019; 1957 - 1973. 10.17341/gazimmfd.571644
IEEE Kivanc O,Mungan T,atila b,Tosun G "İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler." , ss.1957 - 1973, 2019. 10.17341/gazimmfd.571644
ISNAD Kivanc, Omer Cihan vd. "İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler". (2019), 1957-1973. https://doi.org/10.17341/gazimmfd.571644
APA Kivanc O, Mungan T, atila b, Tosun G (2019). İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34(4), 1957 - 1973. 10.17341/gazimmfd.571644
Chicago Kivanc Omer Cihan,Mungan Tahir Eren,atila berkin,Tosun Gurkan İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34, no.4 (2019): 1957 - 1973. 10.17341/gazimmfd.571644
MLA Kivanc Omer Cihan,Mungan Tahir Eren,atila berkin,Tosun Gurkan İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.34, no.4, 2019, ss.1957 - 1973. 10.17341/gazimmfd.571644
AMA Kivanc O,Mungan T,atila b,Tosun G İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2019; 34(4): 1957 - 1973. 10.17341/gazimmfd.571644
Vancouver Kivanc O,Mungan T,atila b,Tosun G İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2019; 34(4): 1957 - 1973. 10.17341/gazimmfd.571644
IEEE Kivanc O,Mungan T,atila b,Tosun G "İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 34, ss.1957 - 1973, 2019. 10.17341/gazimmfd.571644
ISNAD Kivanc, Omer Cihan vd. "İnsansız kara aracı geliştirmeye bütünleşik bir yaklaşım: tasarım, analiz, uygulama ve öneriler". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 34/4 (2019), 1957-1973. https://doi.org/10.17341/gazimmfd.571644