Yıl: 2020 Cilt: 35 Sayı: 2 Sayfa Aralığı: 835 - 844 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.543608 İndeks Tarihi: 11-01-2021

1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini

Öz:
Bu çalışmada, 1H-1,2,4-triazole-3-thiol (T3T) ile altın (Au) elektrot yüzeyi kaplanarak Au-T3T elektroduhazırlanmıştır. Kaplama işlemi, dönüşümlü voltametri (CV) yöntemi kullanılarak 1×10-3 mol L-1 T3Tçözeltisi içerisinde, 0,1 V s-1 tarama hızıyla -0,8 V ile +1,5 V arasında, 30 çevrim sayısı ilegerçekleştirilmiştir. Hazırlanan Au-T3T elektrodu yüzeyinde dönüşümlü voltametri (CV) ve diferansiyelpuls voltametrisi (DPV) teknikleri kullanılarak fenolün (Ph) elektrokimyasal davranışı incelenmiş ve DPVtekniği ile voltametrik tayini gerçekleştirilmiştir. Au-T3T elektrodu ile Ph tayini için uygun olan destekelektrolit ve pH gibi optimum çalışma şartları belirlenmiştir. En uygun destek elektrolit ortamının pH 1.0HClO4 çözeltisi olduğu belirlenmiştir. Au elektrot yüzeyinin T3T ile modifiye edilmesiyle, fenolünyükseltgenme pikinin akım değerinde 3,41 kat artış olduğu belirlenmiştir. Au-T3T modifiye elektrot ile Phiçin çalışma aralığı 1,010-7–3,610-5 M ve gözlenebilme sınırı (LOD) 1,210-8 M olarak belirlenmiştir. AuT3T elektrodunun Ph tayininde iyi bir tekrarlanabilirlik, kararlılık ve seçiciliğe sahip olduğu tespit edilmiştir.Modifiye elektrotla, musluk suyunda standart ekleme yöntemi kullanarak düşük bağıl standart sapma (BSS)ve iyi bir geri kazanım değerleri ile Ph tayini gerçekleştirilmiştir
Anahtar Kelime:

Investigation of the electrochemical behavior of phenol using 1H-1, 2, 4-triazole-3-thiol modified gold electrode and its voltammetric determination

Öz:
In this study, the Au-T3T modified electrode was prepared by coating the surface of gold (Au) electrode with 1H-1, 2, 4-triazole-3-thiol (T3T). Deposition of T3T was performed by cyclic voltammetry scanning from -0.8 V to +1.5 V at a sweep rate of 100 mV s-1 for 30 cycles in 1 mM T3T solution. The electrochemical behavior of phenol (Ph) was investigated by using voltammetry (CV) and differential pulse voltammetry (DPV) techniques on the Au-T3T electrode surface and voltammetric determination was performed. Optimum working conditions such as supporting electrolyte and its pH value, which are suitable for determination of Ph have been determined by Au-T3T electrode. The suitable support electrolyte was determined to be pH 1.0 HClO4 solution. By modifying the Au electrode surface with T3T, it was determined that the current value of the oxidation peak of the phenol increased by 3.41 times. The calibration curve and limit of detection (LOD) were obtained in the range of 1.0×10-7 - 3.6×10-5 M and 1.2×10-8 M on the Au-T3T modified electrode, respectively. The Au-T3T electrode has been seen to have good repeatability, stability, and selectivity in the determination of Ph. Determination of Ph on the Au-T3T modified electrode was performed with low standard deviation (BSS) and good recovery values using standard addition method in tap water.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Aksu Z., Yener J., Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge, Process Biochemistry, 33 (6), 649-655, 1998.
  • 2. Eker G., Spatial variations of polycyclic aromatic hydrocarbons (pahs) concentrations in olive grove area soils in Bursa, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (2), 607-616, 2017.
  • 3. Yener J., Aksu, Z., The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: comparison with granular avtivated carbon, J. of Environmental Science and Health Part AToxic/ Hazardous Engineering, Substance and Environmental Engineering, 34 (9), 1777-1796, 1999.
  • 4. Çokay E., Şengül F., Toksik kirleticilerin ileri oksidasyon prosesleri ile arıtımı, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8 (2), 1-9, 2006.
  • 5. Camcıoğlu Ş., Özyurt B., Zeybek Z., Hapoğlu H., Experimental application of one step ahead advanced pH control to water-based paint wastewater treatment, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (3), 655-664, 2016.
  • 6. Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Phenol (Update). Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. 1998.
  • 7. Dede Ö. T., Sezer M., The application of Canadian water quality index (CWQI) model for the assessment of water quality of Aksu creek, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 909-917, 2017.
  • 8. Emerson E., The condensation of aminoantipyrine. II. A new color test for phenolic compounds, The Journal of Organic Chemistry, 8 (5), 417-428, 1943.
  • 9. Tang G., Huang Y., Zhang T., Wang Q., Crommen J., Fillet M., Jiang Z., Determination of phenolic acids in extra virgin olive oil using supercritical fluid chromatography coupled with single quadrupole mass spectrometry, Journal of pharmaceutical and biomedical analysis, 157, 217-225, 2018.
  • 10. Luo X., Zheng H., Zhang Z., Wang M., Yang B., Huang L., Wang M., Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection, Microchemical Journal, 137, 148-154, 2018.
  • 11. Wei C., Huang Q. T., Hu S. R., Zhang H. Q., Zhang W. X., Wang Z. M., Zhu M., Dai P., Huang L., Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multiwalled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149, 237–244, 2014. https://doi.org/10.1016/j.electacta.2014.10.051
  • 12. Kaffash A., Zare H. R., Rostami K., Highly sensitive biosensing of phenol based on the adsorption of the phenol enzymatic oxidation product on the surface of an electrochemically reduced graphene oxide-modified electrode, Analytical Methods, 10 (23), 2731-2739, 2018.
  • 13. Merkyte V., Morozova K., Boselli E., Scampicchio M., Fast and simultaneous determination of antioxidant activity, total phenols and bitterness of red wines by a multichannel amperometric electronic tongue, Electroanalysis, 30 (2), 314-319, 2018.
  • 14. Rocha D. P., Dornellas R. M., Cardoso R. M., Narciso L. C., Silva M. N., Nossol E., Munoz R. A., Chemically versus electrochemically reduced graphene oxide: improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces, Sensors and Actuators B: Chemical, 254, 701-708, 2018.
  • 15. Gu B. X., Xu C. X., Zhu G. P., Liu S. Q., Chen L. Y., Li X. S., Tyrosinase immobilization on ZnO nanorods for phenol detection, The Journal of Physical Chemistry B, 113 (1), 377-381, 2008.
  • 16. Wang J., Wang Y., Yao Z., Liu C., Xu Y., Jiang Z., Preparation of Fe3O4/MWCNT nano-hybrid and its application as phenol sensor, Materials Research Express, 5 (7), 075003, 2018.
  • 17. Arfin T., Rangari S. N., Graphene oxide–ZnO nanocomposite modified electrode for the detection of phenol, Analytical Methods, 10 (3), 347-358, 2018.
  • 18. Caetano F. R., Carneiro E. A., Agustini D., FigueiredoFilho L. C. S., Banks C. E., Bergamini M. F., MarcolinoJunior L. H., Combination of electrochemical biosensor and textile threads: A microfluidic device for phenol determination in tap water, Biosensors and Bioelectronics, 99, 382-388, 2018.
  • 19. Arslan H., Şenarslan D., Çevrimli B. S., Zengin H., Uzun D., Arslan F., Preparation of carbon paste electrode containing polyaniline-activated carbon composite for amperometric detection of phenol, Bulgarian Chemical Communications, 50 (1), 16-20, 2018.
  • 20. Asan G., Çelikkan H., Electrochemical analysis of ascorbic acid with MoS2 based electrode, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 617–625, 2017.
  • 21. Calam T. T., Hasdemir E., Application of 1, 6- hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe (II) using square wave voltammetry, Gazi University Journal of Science, 31 (1), 53-64, 2018.
  • 22. Uzun D., Aktan E., Özdemir Ö. G., Hasdemir E. Theoretical study of the structure and tautomerism of an asymmetric diimine Schiff base, preparation and characterization of its modified electrode. Gazi University Journal of Science, 30 (4), 124-138, 2017.
  • 23. Uzun D., Gündüzalp A. B., Hasdemir E., Selective determination of dopamine in the presence of uric acid and ascorbic acid by N, N′-bis (indole-3- carboxaldimine)-1, 2-diaminocyclohexane thin film modified glassy carbon electrode by differential pulse voltammetry, Journal of Electroanalytical Chemistry, 747, 68-76, 2015.
  • 24. Calam T. T., Analytical application of the poly(1H1,2,4-triazole-3-thiol) modified gold electrode for high sensitive voltammetric determination of catechol in tap and lake water samples, Journal of Environmental Analitical Chemistry, 99 (13), 1298-1312, 2019.
  • https://doi.org /10.1080 /03067319.2019.1619716. 25. Danyıldız Z., Uzun D., Calam T. T., Hasdemir E., A voltammetric sensor based on glassy carbon electrode modified with 1H-1, 2, 4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution, Journal of Electroanalytical Chemistry, 805, 177-183, 2017.
  • 26. Karabiberoğlu Ş. U., Koçak Ç. C., Voltammetric determination of vanillin in commercial food products using overoxidized poly (pyrrole) film-modified glassy carbon electrodes, Turkish Journal of Chemistry 42 (2), 291-305, 2018.
  • 27. Wu W., Yang L., Zhao F., Zeng B., A vanillin electrochemical sensor based on molecularly imprinted poly (1-vinyl-3-octylimidazole hexafluoride phosphorus)− multi-walled carbon nanotubes@ polydopamine–carboxyl single-walled carbon nanotubes composite, Sensors and Actuators B: Chemical, 239, 481-487, 2017.
  • 28. Barsan M. M., Pinto E. M., Brett C. M., Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors, Electrochimica Acta, 53 (11), 3973-3982, 2008.
  • 29. Nazari M., Kashanian S., Moradipour P., Maleki N., A novel fabrication of sensor using ZnO-Al2O3 ceramic nanofibers to simultaneously detect catechol and hydroquinone, Journal of Electroanalytical Chemistry, 812, 122-131, 2018.
  • 30. Laviron E., The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes, J. Electroanal. Chem. 100, 263-270, 1979.
  • 31. Chen C., Chen W., Qian L., Gao Z., Determination of catechol by cetyltrimethylammonium bromide functionalized graphene modified electrode, Advances in Sciences and Engineering, 10 (1), 1-1, 2018.
  • 32. Nady H., El-Rabiei M. M., El-Hafez G. A., Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution, Egyptian Journal of Petroleum, 26 (3), 669-678, 2017.
  • 33. Goulart L. A., Gonçalves R., Correa A. A., Pereira E. C., Mascaro L. H. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol, Microchimica Acta, 185 (1), 12, 2018.
  • 34. Zhao G. H, Tang Y. T, Liu M. C., Lei Y. Z.,Xiao X. E., Direct and simultaneous determination of phenol, hydroquinone and nitrophenol at borondoped diamond film electrode, Chinese Journal of Chemistry, 25, 1445– 1450, 2007. https:// doi.org/10.1002/cjoc.200790267
  • 35. Hashemnia S., Khayatzadeh S., Hashemnia M., Electrochemical detection of phenolic compounds using composite film of multiwall carbon nanotube/surfactant/tyrosinase on a carbon paste electrode, J. Solid State Electrochem., 16:473–479, 2012. https://doi.org/10.1007/s10008-011-1355-2
  • 36. Shahbakhsh M., Noroozifar M., Poly (dopamine quinone-chromium (III) complex) microspheres as new modifier for simultaneous determination of phenolic compounds, Biosensors and Bioelectronics, 102, 439- 448, 2018.
  • 37. Campuzano S., Serra B., Pedrero M., Villena F. J. M., Pingarrón J.M., Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors, Analytica Chimica Acta, 494, 187–197, 2003.
  • 38. Tatli F., Uzun D., Calam T. T., Gündüzalp A. B., Hasdemir E., Preparation and characterization of 3‐ [(1H‐1, 2,4‐triazole‐3‐ylimino) methyl] naphtalene‐2‐ol film at the platinum surface for selective voltammetric determination of dopamine in the presence of uric acid and ascorbic acid, Surface and Interface Analysis, 51 (4), 475-483, 2019.
APA Tabanlıgil Calam T (2020). 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. , 835 - 844. 10.17341/gazimmfd.543608
Chicago Tabanlıgil Calam Tuğba 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. (2020): 835 - 844. 10.17341/gazimmfd.543608
MLA Tabanlıgil Calam Tuğba 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. , 2020, ss.835 - 844. 10.17341/gazimmfd.543608
AMA Tabanlıgil Calam T 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. . 2020; 835 - 844. 10.17341/gazimmfd.543608
Vancouver Tabanlıgil Calam T 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. . 2020; 835 - 844. 10.17341/gazimmfd.543608
IEEE Tabanlıgil Calam T "1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini." , ss.835 - 844, 2020. 10.17341/gazimmfd.543608
ISNAD Tabanlıgil Calam, Tuğba. "1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini". (2020), 835-844. https://doi.org/10.17341/gazimmfd.543608
APA Tabanlıgil Calam T (2020). 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(2), 835 - 844. 10.17341/gazimmfd.543608
Chicago Tabanlıgil Calam Tuğba 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no.2 (2020): 835 - 844. 10.17341/gazimmfd.543608
MLA Tabanlıgil Calam Tuğba 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.35, no.2, 2020, ss.835 - 844. 10.17341/gazimmfd.543608
AMA Tabanlıgil Calam T 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(2): 835 - 844. 10.17341/gazimmfd.543608
Vancouver Tabanlıgil Calam T 1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(2): 835 - 844. 10.17341/gazimmfd.543608
IEEE Tabanlıgil Calam T "1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35, ss.835 - 844, 2020. 10.17341/gazimmfd.543608
ISNAD Tabanlıgil Calam, Tuğba. "1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/2 (2020), 835-844. https://doi.org/10.17341/gazimmfd.543608