Yıl: 2020 Cilt: 35 Sayı: 3 Sayfa Aralığı: 1399 - 1408 Metin Dili: Türkçe DOI: 10.17341/gazimmfd.467099 İndeks Tarihi: 12-01-2021

Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği

Öz:
Bu çalışmada Acid Violet 90 Cr-kompleks boyar maddesinin sulu ortamlardan giderimi için Candidatropicalis mayası kullanılmıştır. Boyar madde giderimine başlangıç pH (3-6), indirgen şeker derişimi (1-20g/L) ve boyar madde derişiminin (20-400 mg/L) etkisi araştırılmıştır. En yüksek biyobirikim pH 5’te,başlangıç boyar madde derişimi 50 mg/L iken %50,3 olarak elde edilmiştir. Boyar madde içermeyen kontrolortamında Monod doygunluk sabiti ve maksimum özgül üreme hızı 1,21 mg/L ve 0,267 1/h olarakbulunmuştur. AV90’nın C. tropicalis üremesine inhibisyonunu belirlemek için Lineer-karma tip inhibisyonmodeli kullanılmıştır. AV90’nın inhibisyon sabiti (KI) 1008 mg/L olarak elde edilmiştir. Deneysel sonuçlarve kinetik modelden elde edilen KI değerinin yüksek olması C. tropicalis’in azo boyar maddeye karşı dirençliolduğunu ve azo boyar maddeleri içeren endüstriyel atıksuların biyolojik arıtımında kullanılabileceğinigöstermektedir.
Anahtar Kelime:

Removal of metal-complex dye with Candida tropicalis from aqueous solutions : growth and ınhibition kinetics

Öz:
In this study Candida tropicalis was used to removal of the Acid Violet 90 Cr-complex dye from aqueous solutions. The effect of initial pH (3-6), reducing sugar (1-20 g/L)and dye concentrations (20-400 mg/L) on dye removal was examined. The highest bioaccumulations were obtained as 50.3% at 50 mg/L initial dye concentration at pH 5.0. Monod saturation constant (KS) and maximum specific growth rate (m) obtained in the control medium containing no dye were found as 1.21 mg/L and 0.267 1/h. The linear mixed-type inhibition model was used to describe the inhibition of AV90 dye on the growth of C. tropicalis. The inhibition constant (KI) of AV90 was determined as 1008 mg/L. Experimental results and high KI value obtained from kinetic model show that C. tropicalis was resistant to azo dye and this yeast may be used for biological treatment of industrial wastewaters containing azo dyes.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Saratale R.G., Saratale G.D., Chang J.S., Govindwar S.P., Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326, J. Hazard. Mater., 166, 1421-1428, 2009.
  • 2. Lıu W., Lıu L., Lıu C., Hao Y., Yang H., Yuan B., Jiang J., Methylene blue enhances the anaerobic decolorization and detoxication of azo dye by Shewanella onediensis MR-1, Biochem. Eng. J., 110, 115-124, 2016.
  • 3. Gajera H.P., Bambharolia R.P., Hirpara D.G., Patel S.V., Golakiya B.A., Molecular identification and characterization of novel Hypocrea koningii associated with azo dyes decolorization and biodegradation of textile dye effluents, Process Safety and Environmental Protection, 98, 406-416, 2015.
  • 4. Xu F., Mou Z., Geng J., Zhang X., Li C., Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from marine sediment, Chemosphere 158, 30-36, 2016.
  • 5. Meerbergen K., Crauwels S., Willems K.A., Dewil R., Impe J.V., Appels L., Lievens B., Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment, J. Biosci. Bioeng., 124 (6), 668-673, 2017.
  • 6. Li T., Guthrie J.T., Colour removal from aqueous solutions of metal-complex azo dyes using bacterial cells of Shewanella strain J18 143, Bioresour. Technol., 101, 4291-4295, 2010.
  • 7. Tan L., He M., Song L., Fu X., Shı S., Aerobic decolorization, degradation and detoxification of azo dyes by a newly isolated salt-tolerant yeast Scheffersomyces spartinae TLHS-SF1, Bioresour. Technol., 203, 287-294, 2016.
  • 8. Aksu Z., Dönmez G., Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis, Process Biochem., 40, 2443-2454, 2005.
  • 9. Fu Y., Viraraghavan T., Fungal decolorization of dye wastewaters: a review. Bioresour. Technol., 79, 251- 262, 2001.
  • 10. Sharma S.C.D., Sun Q., Li J., Wang Y., Suanon F., Yang J., Yu C.P., Decolorization of azo dye methyl red by suspended and co-immobilized bacterial cells with mediators anthraquinone-2,6-disulfonate and Fe3O4 nanoparticles, Int. Biodeterior. Biodegrad., 112, 88-97, 2016.
  • 11. Tuttolomondo M.V., Alvarez G.S., Desimone M.F., Diaz L.E., Removal of azo dyes from water by sol–gel immobilized Pseudomonas sp., J. Environ. Chem. Eng., 2, 131-136, 2014.
  • 12. Przystas W., Zabłocka-Godlewska E., Grabinska-Sota E., Efficiency of decolorization of different dyes using fungal biomass immobilized on different solid supports, Brazilian Journal of Microbiology, 49, 285–295, 2018.
  • 13. Erdem F., Tosun A., Ergun M., Biosorption of Remazol Yellow (RR) by Saccharomyces cerevisiae in a batch system, Journal of the Faculty of Engineering and Architecture of Gazi University 31 (4), 971-978, 2016.
  • 14. Martorell M.M., Pajot H.F., Figueroa L.I.C., Dyedecolourizing yeasts isolated from Las Yungas rainforest. Dye assimilation and removal used as selection criteria, Int. Biodeterior. Biodegrad., 66, 25- 32, 2012.
  • 15. Hameed B.B., Ismail, Z.Z., Decolorization, biodegradation and detoxification of reactive red azo dye using non-adapted immobilized mixed cells, Biochemical Engineering Journal, 137, 71–77, 2018.
  • 16. Rosu C.M., Avadanei M., Gherghel D., Mihasan M., Mihai C., Trifan A., Miron A., Vochita G., Biodegradation and Detoxification Efficiency of AzoDye Reactive Orange 16 by Pichia kudriavzevii CRY103, Water Air Soil Pollut., 229 (15), 1-18, 2018.
  • 17. Hadibarata T., Syafiuddin A., Al‑ Dhabaan F.A., · Elshikh M.S., Rubiyatno, Biodegradation of Mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal, Bioprocess Biosyst. Eng., 41, 621–632, 2018.
  • 18. Saroj S., Kumar K., Pareek N., Prasad R., Singh R.P., Biodegradation of azo dyes Acid Red 183, Direct Blue 15 and Direct Red 75 by the isolate Penicillium oxalicum SAR-3, Chemosphere, 107, 240–248, 2014.
  • 19. Tan L., Ning S., Zhang X., Shi S., Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1, Bioresour. Technol., 138, 307–313, 2013.
  • 20. Das D., Charumathi D., Das N., Combined effects of sugarcane bagasse extract and synthetic dyes on the growth and bioaccumulation properties of Pichia fermentans MTCC 189, J. Hazard. Mater., 183, 497- 505, 2010.
  • 21. Qu Y., Cao X., Ma Q., Shi S., Tan L., Li X., Zhou H., Zhang X., Zhou J., Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp. TCL, J. Hazard. Mater., 223–224, 31–38, 2012.
  • 22. Das D., Charumathi D., Das N., Bioaccumulation of the synthetic dye Basic Violet 3 and heavy metals in single and binary systems by Candida tropicalis grown in a sugarcane bagasse extract medium: Modelling optimal conditions using response surface methodology (RSM) and inhibition kinetics, J. Hazard. Mater., 186, 1541– 1552, 2011.
  • 23. Dönmez G., Bioaccumulation of the reactive textile dyes by Candida tropicalis growing in molasses medium, Enzyme and Microb. Technol., 30, 363–366, 2002.
  • 24. Arora S., Saini H.S., Singh K., Decolorisation of a monoazo disperse dye with Candida tropicalis, Color. Technol., 121, 298-303, 2005.
  • 25. Gönen F., Aksu Z., Predictive expressions of growth and Remazol Turquoise Blue-G reactive dye bioaccumulation properties of Candida utilis, Enzyme and Microb. Technol., 45, 15-21, 2009.
  • 26. Aksu Z. Reactive dye bioaccumulation by Saccharomyces cerevisiae. Process Biochem., 38, 1437- 1444, 2003.
  • 27. Jadhav J.P., Parshetti G.K., Kalme S.D., Govindwar S.P., Decolourization of azo dye methyl red by Saccharomyces cerevisiae MTCC 463, Chemosphere, 68, 394–400, 2007.
  • 28. Pajot H.F., Farina J.I., Figueroa L.I.C., Evidence on manganese peroxidase and tyrosinase expression during decolorization of textile industry dyes by Trichosporon akiyoshidainum, Int. Biodeterior. Biodegrad., 65(8), 1199-1207, 2011.
  • 29. Tan L., Li H., Ning S., Xu B., Aerobic decolorization and degradation of azo dyes by suspended growing cells and immobilized cells of a newly isolated yeast Magnusiomyces ingens LH-F1, Bioresour. Technol. 158, 321–328, 2014.
  • 30. Charumathi D., Das N., Bioaccumulation of Synthetic Dyes by Candida tropicalis Growing in Sugarcane Bagasse Extract Medium, Advances in Biological Research, 4 (4), 233-240, 2010.
  • 31. Song L., Shao Y., Ning S., Tan L., Performance of a newly isolated salt-tolerant yeast strain Pichia occidentalis G1 for degrading and detoxifying azo dyes, Bioresour. Technol., 233, 21–29, 2017.
  • 32. Saravanan P., Sivakumar P., Suganya T., Nagendra Gandhi N., Renganathan S., Bioaccumulation of reactive red 11 using live yeast Rhodotorula glutinis, Indian Journal of Environmental Protection 32 (3), 249- 255, 2012.
  • 33. Ramalho P.A., Scholze H., Helena Cardoso M., Teresa Ramalho M., Oliveira-Campos A.M., Improved conditions for the aerobic reductive decolourisation of azo dyes by Candida zeylanoides, Enzyme and Microb. Technol., 31, 848–854, 2002.
  • 34. Meehan C., Banat I., Mcmullan G., Nigam P., Smyth F., Marchant R., Decolorization of Remazol Black-B using a thermotolerant yeast, Kluyveromyces marxianus IMB3. Environ. Int., 26, 75-79, 2000.
  • 35. Vijaykumar M., Veeranagouda Y., Neelakanteshwar K., Karegoudar T., Decolorization of 1: 2 metal complex dye Acid blue 193 by a newly isolated fungus, Cladosporium cladosporioides, World J. Microbiol. Biotechnol., 22, 157-162, 2006.
  • 36. Blánquez P., Caminal G., Sarrà M., Vicent T., The effect of HRT on the decolourisation of the Grey Lanaset G textile dye by Trametes versicolor, Chem. Eng. J., 126, 163-169, 2007.
  • 37. Park C., Lee M., Lee B., Kim S.W., Chase H.C., Lee J., Kim S., Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii, Biochem. Eng. J., 36, 59–65, 2007.
  • 38. Xin B., Chen G., Zheng W., Bioaccumulation of Cucomplex reactive dye by growing pellets of Penicillium oxalicum and its mechanism, Water Res., 44, 3565- 3572, 2010.
  • 39. Ghosh A., Ghosh Dastidar M., Ramaswamy Sreekrishnan T., Bioremediation of a Chromium Complex Dye UsingAspergillus flavus and Aspergillus tamarii, Chemical Engineering Technology, 39 (9), 1636-1644, 2016.
  • 40. Ghosh, A., Ghosh Dastidar, M., Ramaswamy Sreekrishnan, T., Bioremediation of chromium complex dyes and treatment of sludge generated during the process. Int. Biodeterior. Biodegrad, 119, 448-460, 2017.
  • 41. Kalpana D., Shim J.H., Oh B.T., Senthil K., Lee Y.S., Bioremediation of the heavy metal complex dye Isolan Dark Blue 2SGL-01 by white rot fungus Irpex lacteus, J. Hazard. Mater., 198, 198–205, 2011.
  • 42. Blackburn R.S., Burkınshaw S.M., A greener approach to cotton dyeings. Part 2: application of 1:2 metal complex acid dyes. Green Chemistry, 4, 261-265, 2002.
  • 43. Mıller G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar, Anal. Chem., 31, 426- 428, 1959.
  • 44. Taşkın M., Erdal S., Reactive dye bioaccumulation by fungus Aspergillus niger isolated from the effluent of sugar fabric-contaminated soil, Toxicology and Industrial Health, 26 (4), 239–247, 2010.
  • 45. Chen K.C., Wu J. Y., Lıou D.J., Hwang S.C.J., Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol., 101, 57-68, 2003.
  • 46. Keklikcioğlu Çakmak N.,, Açıkel Ü., Study of lipase enzym activity with Candida utilis yeast in different media condition, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (3), 475-485, 2015.
  • 47. Segel I. H., Enzyme kinetics, Wiley, New York, Rapid equilibrium partial and mixed-type inhibition, 161-226, 1975.
  • 48. Sponza D.T., Işık M., Decolorization and inhibition kinetic of Direct Black 38 azo dye with granulated anaerobic sludge, Enzyme Microb. Technol., 34, 147- 158, 2004.
APA Okur M, Saraçoğlu N, Aksu Z (2020). Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. , 1399 - 1408. 10.17341/gazimmfd.467099
Chicago Okur Müjgan,Saraçoğlu Nurdan,Aksu Zumriye Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. (2020): 1399 - 1408. 10.17341/gazimmfd.467099
MLA Okur Müjgan,Saraçoğlu Nurdan,Aksu Zumriye Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. , 2020, ss.1399 - 1408. 10.17341/gazimmfd.467099
AMA Okur M,Saraçoğlu N,Aksu Z Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. . 2020; 1399 - 1408. 10.17341/gazimmfd.467099
Vancouver Okur M,Saraçoğlu N,Aksu Z Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. . 2020; 1399 - 1408. 10.17341/gazimmfd.467099
IEEE Okur M,Saraçoğlu N,Aksu Z "Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği." , ss.1399 - 1408, 2020. 10.17341/gazimmfd.467099
ISNAD Okur, Müjgan vd. "Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği". (2020), 1399-1408. https://doi.org/10.17341/gazimmfd.467099
APA Okur M, Saraçoğlu N, Aksu Z (2020). Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35(3), 1399 - 1408. 10.17341/gazimmfd.467099
Chicago Okur Müjgan,Saraçoğlu Nurdan,Aksu Zumriye Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35, no.3 (2020): 1399 - 1408. 10.17341/gazimmfd.467099
MLA Okur Müjgan,Saraçoğlu Nurdan,Aksu Zumriye Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol.35, no.3, 2020, ss.1399 - 1408. 10.17341/gazimmfd.467099
AMA Okur M,Saraçoğlu N,Aksu Z Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(3): 1399 - 1408. 10.17341/gazimmfd.467099
Vancouver Okur M,Saraçoğlu N,Aksu Z Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi. 2020; 35(3): 1399 - 1408. 10.17341/gazimmfd.467099
IEEE Okur M,Saraçoğlu N,Aksu Z "Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği." Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 35, ss.1399 - 1408, 2020. 10.17341/gazimmfd.467099
ISNAD Okur, Müjgan vd. "Candida tropicalis ile sulu çözeltilerden metal-kompleks boyar madde giderimi : Üreme ve inhibisyon kinetiği". Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 35/3 (2020), 1399-1408. https://doi.org/10.17341/gazimmfd.467099