Yıl: 2020 Cilt: 4 Sayı: 3 Sayfa Aralığı: 131 - 141 Metin Dili: İngilizce DOI: 10.26701/ems.703619 İndeks Tarihi: 22-01-2021

On the Way to Real Applications: Aluminum Matrix Syntactic Foams

Öz:
In recent times, aluminum matrix syntactic foams (AMSFs) have become considerably attractive for manyindustries such as automotive, aviation, aerospace and composite sector due to their features of low density,good compression strength, perfect energy absorption capacity and good ductility. Since the AMSF includesfiller materials providing high porosity, it can be also named as composite foam and can be placed betweentraditional metal foams and particle reinforced composites. Glass and ceramic hollow spheres, fly ashcenospheres and ceramic porous materials are usually used in the AMSFs, but, lately, different types of fillersbeing cheaper and stronger have also being investigated. Although many scientific efforts have been made forthe last decade to understand mechanical and physical properties of these advanced materials, studies havemainly been performed on relatively small size samples and remained in laboratory. Therefore, there is still roomfor improvement in terms of fabrication techniques. In this paper, our aims are to scrutinize newest studiesabout ASMFs, to create new viewpoints and to introduce an alternative bright perspective for probable realapplications.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Acoustic Properties of Syntactic Foam – Part 2 (2020). Retrieved on February 10, 2020, from https://esyntactic.com/acoustic-properties-of-syntactic-foam-part-2/.
  • [2] Orbulov, I. N., Szlancsik, A. (2018). On the mechanical properties of aluminum matrix syntactic foams. Advanced Engineering Materials, 20(5), 1700980. doi:10.1002/adem.201700980.
  • [3] Gupta, N., Rohatgi, K. (2015). Metal Matrix Syntactic Foams:Processing, Microstructure, Properties and Applications. Lancaster, USA.
  • [4] Szlancsik, A., Katona, B., Májlinger, K., Orbulov, I.N. (2015). Compressive behavior and microstructural characteristics of iron hollow sphere filled aluminum matrix syntactic foams. Materials, 8 (11): 7926-7937. doi:/10.3390/ma8115432.
  • [5] Taherishargh, M., Belova, I.V., Murch, G.E., Fiedler, T. (2015). Pumice/ aluminium syntactic foam. Materials Science & Engineering A, 635: 102–108. doi:10.1016/j.msea.2015.03.061.
  • [6] Ferguson, J.B, Santa Maria, J.A., Schultz, B.F., Rohatgi, P.K. (2013). Al– Al2O3 syntactic foams—Part II: Predicting mechanical properties of metal matrix syntactic foams reinforced with ceramic spheres. Materials Science & Engineering A, 582: 423-432. doi:10.1016/j. msea.2013.06.065.
  • [7] Wu, G.H., Dou, Z.Y., Sun, D.L. Jiang, L.T. Ding, B.S. He, B.F. (2007). Compression behaviors of cenosphere–pure aluminum syntactic foams. Scripta Materialia, 56 (3): 221-224. doi:10.1016/j.scriptamat.2006.10.008.
  • [8] Luong, D.D., Strbik III, O.M., Hammond, V.H., Gupta, N., Cho, K. (2013). Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates. Journal of Alloys and Compounds, 550: 412–422. doi: 10.1016/j.jallcom.2012.10.171.
  • [9] Al-Sahlani, K., Broxtermann, S., Lell, D., Fiedler, T. (2018). Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams. Materials Science and Engineering: A, 728: 80-87. doi:10.1016/j.msea.2018.04.103.
  • [10] Tao, X.F., Zhang, L.P., Zhao, Y.Y. (2009). Al matrix syntactic foam fabricated with bimodal ceramic microspheres. Materials and Design, 30: 2732–2736. doi:10.1016/j.matdes.2008.11.005.
  • [11] Gupta, N., Luong, D.D., Cho, K. (2012). Magnesium matrix composite foams—density, mechanical properties, and applications. Metals 2 (3): 238-252. doi:/10.3390/met2030238.
  • [12] Licitra, L., Luong, D.D., Strbik III, O.M., Gupta, N. (2015). Dynamic properties of alumina hollow particle filled aluminum alloy A356 matrix syntactic foams. Materials and Design, 66 (B): 504–515. doi:10.1016/j.matdes.2014.03.041.
  • [13] ASM Handbook Committee (1991). Heat Treating of Aluminum Alloys. USA.
  • [14] Banhart, J. (2003). Aluminum foams: On the road to real applications. MRS Bulletin, 28 (4): 290-295, doi:10.1557/mrs2003.832003.
  • [15] Zhang, Q., Lee, P.D., Singh, R., Wu, G., Lindley, T.C. (2009). Micro-CT characterization of structural features and deformation behavior of fly ash/aluminum syntactic foam. Acta Materialia 57: 3003–3011. doi:10.1016/j.actamat.2009.02.048.
  • [16] Lin, Y., Zhang, Q., Xiangyu M., Wu, G. (2016). Mechanical behavior of pure Al and Al–Mg syntactic foam composites containing glass cenospheres. Composites: Part A, 87: 194–202. doi:10.1016/j.compositesa.2016.05.001.
  • [17] Zhang, L.P. and Zhao, Y.Y. (2007). Mechanical response of Al matrix syntactic foams produced by pressure infiltration casting. Journal of Composite Materials, 41 (17): 2105-2117. doi:10.1177/0021998307074132.
  • [18] Weise, J., Zanetti-Bueckmann, V., Yezerska, O., Schneider, M. Haesche, M. (2007). Processing,properties and coating of micro-porous syntactic foams. Advanced Engineering Materials, 9 (1-2): 52- 56. doi:10.1002/adem.200600198.
  • [19] Taherishargh, M., Belova, I.V., Murch, G.E, Fiedler, T. Low-density expanded perlite–aluminium syntactic foam. Materials Science & Engineering A, 604: 127–134. doi:10.1016/j.msea.2014.03.003.
  • [20] Palmer, R.A., Gao, K., Doan, T.M., Green, L., Cavallaro, G. (2007). Pressure infiltrated syntactic foams—Process development and mechanical properties’, Materials Science and Engineering: A, 464 (1-2): 85-92. doi:10.1016/j.msea.2007.01.116.
  • [21] Orbulov, I.N., Dobránszky, J. (2008). Producing metal matrix syntactic foams by pressure infiltration. Mechanical Engineering, 52 (1): 35–42. doi:10.3311/pp.me.2008-1.06.
  • [22] Balch, D.K., O’Dwyer, J.G., Davis, G.R., Cady, C.M., Gray III, G.T., Dunand, D.C. (2005). Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Materials Science and Engineering A, 391: 408–417. doi:10.1016/j. msea.2004.09.012.
  • [23] Rivero, G.A.R., Schultz, B.F., Ferguson, J.B., Gupta, N., Rohatgi, P.K. (2013). Compressive properties of Al-A206/SiC and Mg-AZ91/SiC syntactic foams. Journal of Materials Research, 28 (17): 2426-2435. doi:10.1557/jmr.2013.176.
  • [24] Sahu, S., Zahid Ansari, M., Mondal, D.P. (2020). Microstructure and compressive deformation behavior of 2014 aluminium cenosphere syntactic foam made through stircasting technique. Materials Today. doi:10.1016/j.matpr.2019.09.019.
  • [25] Vishwakarma, A., Mondal, D.P., Birla, S., Das, S., Prasanth N. (2017). Effect of cenosphere size on the dry sliding wear behaviour LM13-cenosphere syntactic foam. Tribology International, 110: 8-22. doi:10.1016/j.triboint.2017.01.041.
  • [26] Birla, S., Mondal, D.P., Das, S., Khare, A., Jai Prakash S. (2017). Effect of cenosphere particle size and relative density on the compressive deformation behavior of aluminum-cenosphere hybrid foam. Materials & Design, 117: 168-177. doi:10.1016/j.matdes.2016.12.078.
  • [27] Daoud, A. (2008). Synthesis and characterization of novel ZnAl22 syntactic foam composites via casting. Materials Science and Engineering: A, 488 (1–2): 281-295. doi:10.1016/j.msea.2007.11.020.
  • [28] Daoud, A., Abou El-khair, M.T., Abdel-Aziz, M., Rohatgi, P. (2007). Fabrication, microstructure and compressive behavior of ZC63 Mg– microballoon foam composites. Composites Science and Technology, 67 (9): 1842-1853. doi:10.1016/j.compscitech.2006.10.023.
  • [29] Ferreira, S.C., Velhinho, A., Silva, R.J.C. (2010). Corrosion behaviour of aluminium syntactic functionally graded composites. International Journal of Materials and Product Technology.
  • [30] Kim, H.S. and Plubrai, P. (2004). Manufacturing and failure mechanisms of syntactic foam under compression. Composites Part A: Applied Science and Manufacturing, 35 (9): 1009-1015. doi:10.1016/j. compositesa.2004.03.013.
  • [31] Rohatgi, P.K., Kim, J.K., Gupta, N., Alaraj, S., Daoud, A. (2006). Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Composites Part A: Applied Science and Manufacturing, 37: 430-437. doi:10.1016/j. compositesa.2005.05.047.
  • [32] Orbulov, I.N. (2013). Metal matrix syntactic foams produced by pressure infiltration—The effect of infiltration parameters. Materials Science & Engineering A, 583: 11-19. doi:10.1016/j.msea.2013.06.066.
  • [33] Castro, G., Nutt, S.R., Wenchen, X. (2013). Compression and low-velocity impact behavior of aluminum syntactic foam. Materials Science & Engineering A, 578: 222-229. doi:10.1016/j.msea.2013.04.081.
  • [34] Zhang, Y. and Zhao, Y. (2019). Hysteretic energy dissipation in aluminium matrix syntactic foam under intermittent cyclic compression. Materialia, 6. doi:10.1016/j.mtla.2019.100286.
  • [35] Puga, H., Carneiro, V.H., Jesus, C., Pereira, J., Lopes, V. (2018). Influence of particle diameter in mechanical performance of Al expanded clay syntactic foams. Composite Structures, 184: 698-703. doi:10.1016/j. compstruct.2017.10.040.
  • [36] Goel, M.D., Parameswaran, V., Mondal, D.P. (2019). High strain rate response of cenosphere-filled aluminum alloy syntactic foam. Journal of Materials Engineering and Performance, 28: 4731–4739. doi:10.1007/s11665-019-04237-2.
  • [37] Myers, K., Katona, B., Cortes, P., Orbulov, I.N. (2015). Quasi-static and high strain rate response of aluminum matrix syntactic foams under compression. Composites Part A: Applied Science and Manufacturing, 79: 82-91. doi:10.1016/j.compositesa.2015.09.018.
  • [38] Zhang, B., Lin, Y., Li, S., Zhai, D., Wu, G. (2016). Quasi-static and high strain rates compressive behavior of aluminum matrix syntactic foams. Composites Part B: Engineering, 98: 288-296. doi:10.1016/j. compositesb.2016.05.034.
  • [39] Taherishargh, M., Linul, E., Broxtermann, S., Fiedler, T. (2018). The mechanical properties of expanded perlite-aluminium syntactic foam at elevated temperatures. Journal of Alloys and Compounds, 737: 590-596. doi:10.1016/j.jallcom.2017.12.083.
  • [40] Mondal, D.P., Das, S., Ramakrishnan, N., Bhasker, K.U. (2009). Cenosphere filled aluminum syntactic foam made through stir-casting technique. Composites: Part A, 40 (3): 279–288. doi:10.1016/j.compositesa.2008.12.006.
  • [41] Szlancsik, A., Katona, B., Orbulov, I.N., Taherishargh M., Fiedler, T. (2018). Fatigue properties of EP/A356 aluminium matrix syntactic foams with different densities. IOP Conf. Series: Materials Science and Engineering, 426. doi:10.1088/1757-899X/426/1/012045.
  • [42] Kadar, C., Chmelík, F., Ugi, D., Máthis, K., Knapek, M. (2019). Damage characterization during compression in a perlite-aluminum syntactic foam. Materials 12 (20): 3342. doi:10.3390/ma12203342.
  • [43] Ashby, M.F., and Jones, D.R.H. (2013). Engineering Materials 2 An Introduction to Microstructures and Processing. USA.
  • [44] Balch, D.K., and Dunand, D.C. (2006). Load partitioning in aluminum syntactic foams containing ceramic microspheres. Acta Materialia, 54 (6):1501-1511. doi.10.1016/j.actamat.2005.11.017.
  • [45] Ferguson, J.B., Santa Maria, J.A., Schultz, B.F., Rohatgi, P.K. (2013). Al–Al2O3 syntactic foams—Part I: Effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams. Materials Science & Engineering A, 582: 415–422. doi:10.1016/j.msea.2013.05.081.
  • [46] [46] Mondal, D.P., Goel, M.D., Upadhyay, V., Das, S., Singh M., Barnwal, A.K. (2018). Comparative study on microstructural characteristics and compression deformation behaviour of alumina and cenosphere reinforced aluminum syntactic foam made through stir casting technique. Transactions of the Indian Institute of Metals, 71: 567–577. doi:10.1007/s12666-017-1211-x.
  • [47] Movahedi, N., Murch, G.E., Belova I.V., Fiedler, T. (2019). Effect of heat treatment on the compressive behavior of zinc alloy ZA27 syntactic foam. Materials, 2019, 12 (5): 792. doi:10.3390/ma12050792.
  • [48] Castro, G. and Nutt, S.R. (2012). Synthesis of syntactic steel foam using gravity-fed infiltration. Materials Science and Engineering A, 553: 89– 95. doi:10.1016/j.msea.2012.05.097.
  • [49] Castro, G. and Nutt, S.R. (2012). Synthesis of syntactic steel foam using mechanical pressure infiltration. Materials Science and Engineering A, 535: 274– 280. doi:10.1016/j.msea.2011.12.084.
  • [50] Hartmann, M., Reindel, K., Singer, R.F. (1998). Fabrication and properties of syntactic magnesium foams. Mrs Online Proceedings, 521: 211. doi:10.1557/PROC-521-211.
  • [51] Anantharaman, H., Shunmugasamy, V.C., StrbikIII, O.M., Gupta, N., Cho, K. (2015). Dynamic properties of silicon carbide hollow particle filled magnesium alloy (AZ91D) matrix syntactic foams. International Journal of Impact Engineering, 82: 14-24. doi:10.1016/j. ijimpeng.2015.04.008.
  • [52] Weise, J., Lehmhus, D., Baumeister, J., Kun, R., Bayoumi, M., Busse, M. (2014). Production and properties of 316L stainless steel cellular materials and syntactic foams, Steel Research International, 85 (3). doi:10.1002/srin.201300131.
  • [53] Marlaud, T., Deschamps, A., Bley, F., Lefebvre, W., Baroux, B. (2010). Influence of alloy composition and heat treatment on precipitate composition in Al–Zn–Mg–Cu alloys. Acta Materialia, 58 (1): 248- 260. doi:10.1016/j.actamat.2009.09.003.
  • [54] Elangovan, K. and Balasubramanian, V. (2008). Influences of postweld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints. Materials Characterization, 59 (9): 1168-1177. doi:10.1016/j.matchar.2007.09.006.
  • [55] Mahathaninwong, N., Plookphol, T., Wannasin, J., Wisutmethangoon, S. (2012). T6 heat treatment of rheocasting 7075 Al alloy. Materials Science and Engineering: A, 532: 91-99. doi:10.1016/j. msea.2011.10.068.
  • [56] ISO 13314, Switzerland, 2011.
  • [57] Katona, B., Szlancsik, A., Tábic, T., Orbulov, I.N. (2019). Compressive characteristics and low frequency damping of aluminium matrix syntactic foams. Materials Science & Engineering A, 739: 140–148. doi:10.1016/j.msea.2018.10.014.
  • [58] Zou, L.C., Zhang, Q., Pang, B.J., Wu, G.H., Jiang, L.T., Su, H. (2013). Dynamic compressive behavior of aluminum matrix syntactic foam and its multilayer structure. Materials & Design, 45: 555-560. doi:10.1016/j.matdes.2012.08.015.
  • [59] Santa Maria, J.A., Schultz, B.F, Ferguson, J.B., Gupta, N., Rohatgi, P.K. (2014). Effect of hollow sphere size and size distribution on the quasi-static and high strain rate compressive properties of Al-A380– Al2O3 syntactic foams. Journal of Materials Science, 49: 1267-1278. doi:10.1007/s10853-013-7810-y.
  • [60] Su, M., Wang, H., Hao, H. (2019). Compressive properties of aluminum matrix syntactic foams prepared by stir casting method. Advanced Engineering Materials, 21. doi:10.1002/adem.201900183.
  • [61] Akinwekomi, A.D., Adebisi, J.A., Adediran, A.A. (2019). Compressive characteristics of aluminum-fly ash syntactic foams processed by microwave sintering. Metallurgical and Materials Transactions A, 50: 4257–4260. doi:10.1007/s11661-019-05347-1.
  • [62] Szlancsik, A., Katona, B., Károly, D., Orbulov, I.N. (2109). Notch (In) Sensitivity of aluminum matrix syntactic foams. Materials, 2019, 12 (4): 574. doi:10.3390/ma12040574.
  • [63] Taherishargh, M., Katona, B., Fiedler, T., Orbulov, I.N. (2016). Fatigue properties of expanded perlite/aluminum syntactic foams. The Journal of Composite Materials, 51 (6): 773-781. doi:10.1177/0021998316654305.
  • [64] Katona, B., and Orbulov, I.N. (2017). Structural damages in syntactic metal foams caused by monotone or cyclic compression. Periodica Polytechnica Mechanical Engineering, 61 (2): 146-152. doi:10.3311/ PPme.10346.
  • [65] Katona, B., Szebényi, G., Orbulov, I.N. (2017). Fatigue properties of ceramic hollow sphere filled aluminium matrix syntactic foams. Materials Science and Engineering: A, 679: 350-357. doi:10.1016/j. msea.2016.10.061.
  • [66] Altenaiji, M., Guan, Z.W., Cantwell, W.J., Zhao, Y., Schleyer, G.K. (2014). Characterisation of aluminium matrix syntactic foams under drop weight impact. Materials & Design, 59: 296-302. doi:10.1016/j. matdes.2014.03.002.
  • [67] Sobczak, J. (2003). High Porosity Media for Transportation-Selected Aspects. Journal of KONES Internal Combustion Engines, 10. [68] Ashby, M.F. (2000). Metal Foams: A Design Guide. USA.
  • [69] Ibrahim, I.A., Mohamed, F.A, Lavernia, E.J. (1991). Particulate reinforced metal matrix composites — a review. Journal of Materials Science, 26: 1137–1156.
  • [70] Bakshi, S.R., Lahiri, D., Agarwal, A. (2010). Carbon nanotube reinforced metal matrix composites - a review. Journal International Materials Reviews, 55 (1): 41-64. doi:10.1179/09506600 9X12572530170543.
  • [71] Pickering, K.L., Efendy, M.G.A., Le, T.M.A. (2016). Review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83: 98-112. doi:10.1016/j.compositesa.2015.08.038.
  • [72] Bains, P.S., Sidhu, S.S., Payal, H.S. (2016). Fabrication and machining of metal matrix composites: A Review. Materials and Manufacturing Processes, 31 (5): 553-573. doi:10.1080/10426914.2015.1025976.
  • [73] Rohatgi, P.K., Gupta, N., Schultz, B.F., Luong, D.D. (2011). The synthesis, compressive properties, and applications of metal matrix syntactic foams. Journal of Materials, 63: 36–42. doi:10.1007/s11837- 011-0026-1.
  • [74] Kennedy, A.R. (2002). The effect of TiH2 heat treatment on gas release and foaming in Al–TiH2 preforms. Scripta Materialia, 47 (11): 763-767. doi:10.1016/S1359-6462(02)00281-6.
  • [75] Haesche, M., Weise, J., Moreno, F.G., Banhart, J. (2008). Influence of particle additions on the foaming behaviour of AlSi11/TiH2 composites made by semi-solid processing. Materials Science and Engineering: A, 480 (1–2): 283-288. doi:10.1016/j.msea.2007.07.040.
  • [76] Khabushan, J.K., Bonabi, S.B., Aghbagh, F.M., Khabushan, A.K. (2014). A study of fabricating and compressive properties of cellular Al–Si (355.0) foam using TiH2. Materials & Design, 55: 792-797. doi:10.1016/j.matdes.2013.10.022.
  • [77] Khatib J. (2016). Sustainability of Construction Materials. UK.
  • [78] Giurgiutiu, V. (2016). Structural Health Monitoring of Aerospace Composites. USA.
  • [79] Guo, Q. (2018). Thermosets.
  • [80] Srivastava, A.K., Nag, A., Dixit, A.R., Tiwari, S., Scucka, J., Zelenak, M., Hloch, S., Hlavacek, P. (2017). Surface integrity in tangential turning of hybrid MMC A359/B4C/Al2O3 by abrasive waterjet. Journal of Manufacturing Processes, 28 (1): 11-20. doi:10.1016/j.jmapro.2017.05.017.
  • [81] Gnanavelbabu, A., Saravanan, P., Rajkumar, K., Karthikeyan, S., Baskaran, R. (2018). Effect of abrasive waterjet machining parameters on hybrid AA6061-B4C- CNT composites. Materials Today: Proceedings, 5 (5): 13438–13450. doi:10.1016/j.matpr.2018.02.338.
  • [82] Gnanavelbabu, A., Rajkumar, K., Saravanan, P. (2018). Investigation on the cutting quality characteristics of abrasive water jet machining of AA6061-B4C-hBN hybrid metal matrix composites. Materials and Manufacturing Processes, 33 (12): 1313-1323. doi:10.1080/104 26914.2018.1453146.
  • [83] Marimuthu, S., Dunleavey, J., Liu, Y., Antar, M., Smith, B. (2019). Laser cutting of aluminum-alumina metal matrix composite. Optics & Laser Technology, 117: 251-259. doi:10.1016/j.optlastec.2019.04.029.
  • [84] Marimuthu, S., Dunleavey, J., Smith, B. (2019). Laser based machining of aluminum metal matrix composites. Procedia CIRP, 85: 243-248. doi:10.1016/j.procir.2019.09.007.
  • [85] Manikandan, N., Binoj, J.S., Varaprasad, K.C., Sabari, S.S., Raju, R. (2019). Investigations on wire spark erosion machining of aluminum-based metal matrix composites. Advances in Manufacturing Technology. doi:10.1007/978-981-13-6374-0_42.
  • [86] Ergene, B., and Bolat, C. (2019). A Review on the recent investigation trends in abrasive water jet cutting and turning of hybrid composites. Sigma Journal of Engineering & Natural Sciences, 37 (3): 989- 1016.
  • [87] Uthayakumar, M., Babu, K.V., Kumaran, S.T., Kumar, S.S., Winowlin Jappes, J.T., Rajan, T.P.D. (2019). Study on the machining of Al–SiC functionally graded metal matrix composite using die-sinking EDM. Particulate Science and Technology, 37 (1): 103–109. doi:10.1 080/02726351.2017.1346020.
APA BOLAT C, Akgun I, Göksenli A (2020). On the Way to Real Applications: Aluminum Matrix Syntactic Foams. , 131 - 141. 10.26701/ems.703619
Chicago BOLAT CAGIN,Akgun Ismail Cem,Göksenli Ali On the Way to Real Applications: Aluminum Matrix Syntactic Foams. (2020): 131 - 141. 10.26701/ems.703619
MLA BOLAT CAGIN,Akgun Ismail Cem,Göksenli Ali On the Way to Real Applications: Aluminum Matrix Syntactic Foams. , 2020, ss.131 - 141. 10.26701/ems.703619
AMA BOLAT C,Akgun I,Göksenli A On the Way to Real Applications: Aluminum Matrix Syntactic Foams. . 2020; 131 - 141. 10.26701/ems.703619
Vancouver BOLAT C,Akgun I,Göksenli A On the Way to Real Applications: Aluminum Matrix Syntactic Foams. . 2020; 131 - 141. 10.26701/ems.703619
IEEE BOLAT C,Akgun I,Göksenli A "On the Way to Real Applications: Aluminum Matrix Syntactic Foams." , ss.131 - 141, 2020. 10.26701/ems.703619
ISNAD BOLAT, CAGIN vd. "On the Way to Real Applications: Aluminum Matrix Syntactic Foams". (2020), 131-141. https://doi.org/10.26701/ems.703619
APA BOLAT C, Akgun I, Göksenli A (2020). On the Way to Real Applications: Aluminum Matrix Syntactic Foams. European Mechanical Science, 4(3), 131 - 141. 10.26701/ems.703619
Chicago BOLAT CAGIN,Akgun Ismail Cem,Göksenli Ali On the Way to Real Applications: Aluminum Matrix Syntactic Foams. European Mechanical Science 4, no.3 (2020): 131 - 141. 10.26701/ems.703619
MLA BOLAT CAGIN,Akgun Ismail Cem,Göksenli Ali On the Way to Real Applications: Aluminum Matrix Syntactic Foams. European Mechanical Science, vol.4, no.3, 2020, ss.131 - 141. 10.26701/ems.703619
AMA BOLAT C,Akgun I,Göksenli A On the Way to Real Applications: Aluminum Matrix Syntactic Foams. European Mechanical Science. 2020; 4(3): 131 - 141. 10.26701/ems.703619
Vancouver BOLAT C,Akgun I,Göksenli A On the Way to Real Applications: Aluminum Matrix Syntactic Foams. European Mechanical Science. 2020; 4(3): 131 - 141. 10.26701/ems.703619
IEEE BOLAT C,Akgun I,Göksenli A "On the Way to Real Applications: Aluminum Matrix Syntactic Foams." European Mechanical Science, 4, ss.131 - 141, 2020. 10.26701/ems.703619
ISNAD BOLAT, CAGIN vd. "On the Way to Real Applications: Aluminum Matrix Syntactic Foams". European Mechanical Science 4/3 (2020), 131-141. https://doi.org/10.26701/ems.703619