Yıl: 2018 Cilt: 3 Sayı: 3 Sayfa Aralığı: 124 - 130 Metin Dili: Türkçe İndeks Tarihi: 26-01-2021

Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi

Öz:
Ruminantlarda meme bezi (MB) gerek yeni doğanlara gerekse insan tüketimine süt üretimiyle önemli fonksiyona sahip olan veyavru doğumundan sonra büyüyüp gelişen kompleks bir organdır. MB’nin gelişimi ile sütün sentez ve salgılanması ise laktasyon süreci ileilişkilidir. MB’nin verimi; beslenme, genetik, ırk ve epigenetik faktörlerin etkisi altındadır. Epigenetik faktörlerin başında gelen mikroRNA’lar(miRNA) ortalama 22 nükleotit (19-24 nt) uzunluğunda, kodlamayan RNA molekülleridir. Hücre çoğalması, farklılaşması ve apopitoz gibiönemli biyolojik süreçlerde rol oynayan miRNA’lar post transkripsiyonel regülatör olarak gen ekspresyonunda görev almaktadır.Karsinogenezden embriyogeneze kadar pek çok alanda yoğun olarak çalışılan miRNA’lar sığır, keçi ve koyun türünde sırasıyla; 1045, 436 ve153 (olgun) adet tanımlanmıştır. Tanımlanmış miRNA’lar içerisinde kolostrumda 230, sütte ise 213 miRNA tipi tespit edilmiştir. Ayrıca kurudönemde ve laktasyonun pik evresinde miRNA tipleri ve ekspresyon seviyelerinin farklılık gösterdiği belirlenmiştir. Bir başka çalışmada, süttetespit edilen miRNA’ların miktar olarak kan serumundan iki kat daha fazla olduğu ve serumdan farklı 47 tip miRNA içerdiği görülürken;MB’nin kendine özgü miRNA’lar sentezlediği sonucuna varılmıştır. Ancak miRNA’ların meme bezi gelişimi ve laktasyon regülasyonundakispesifik fonksiyonuna ilişkin bilgiler kısıtlıdır. Bu nedenle, miRNA’ların laktogenez mekanizmalarına olan etkilerinin aydınlatılmasına velaktasyon süt verim ile bileşimine olan etkisinin anlaşılmasına yönelik moleküler çalışmalara ihtiyaç vardır. Bu derlemede çiftlik hayvanlarındamiRNA’ların MB gelişimi ve süt üretimine olan etkilerine yönelik güncel bilgiler ve gelecekteki olası çıkarımlar üzerine odaklanılmıştır.
Anahtar Kelime:

The Impact of MicroRNA’s (miRNA) on Mammary Gland Development and Milk Production in Cattle, Goat and Sheep

Öz:
Mammary gland (MG) of ruminants has important functions in producing milk for both newborns and human consumption and is a complex organ that grows and develops after calving. Development of MG with the synthesis and secretion of milk are both associated with the lactation process. The productivity of MG is under the influence of nutrition, genetics, race and epigenetic factors. The microRNAs (miRNAs), precede the epigenetic factors, are non-coding RNA molecules that have an average length of 22 (19-24nt) nucleotides. The miRNAs, which play a role in important biological processes such as cell proliferation, differentiation and apoptosis, participate in gene expression as a post transcriptional regulators. In cattle, goat and sheep species miRNA’s, which are extensively studied from carcinogenesis to embryogenesis, were defined 1045, 436 and 153 (mature) respectively. 230 miRNAs were detected in the colostrum and 213 miRNAs in the milk within the identified miRNAs. It was also defined that miRNA types and expression levels differed in the dry period and the lactation peak period. In another study, it was seen that the miRNA’s detected in the milk were two times more than the serum and milk contained 47 different miRNAs compaired to serum; consequently it is thought that MG synthesized its own miRNAs. However, the information about miRNAs on mammary gland development and the specific function of lactation regulation is limited. Molecular studies are required to illuminate the effects of miRNAs on lactogenesis mechanisms and to understand its effect on lactation milk yield. This review focuses on the current knowledge and possible future implications of miRNAs both in the development of MG and the milk production in livestock.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Alverez-Garcıa, I. & Miska, E.A. (2005). MicroRNA functions in animal development and human disease. Development, 132(21), 4653-62.
  • Barozai, M.Y.K. (2012). The novel 172 sheep (Ovis aries) microRNAs and their targets. Mol Biol Rep, 39, 6259- 6266.
  • Berezikov, E., Guryev, V., Van De Belt, J., Wienholds, E., Plasterk, R.H. & Cuppen, E. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120(1), 21-24.
  • Bhaskaran, M. & Mohan, M. (2014). MicroRNAs: history, biogenesis, and their evolving role in animal development and disease, Veterinary Pathology, 51(4), 759-774.
  • Chen, X., Gao, C., Li, H., Huang, L., Sun, Q., Dong, Y., Tian, C., Gao, S., Dong, H., Guan, D., Hu, X., Zhao, S., Li, L., Zhu, L., Yan, Q., Zhang, J., Zen, K. & Zhang, C.Y. (2010). Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Research, 20(10), 1128-1137.
  • Cui, Y., Sun, X., Jin, L., Yu, G., Li, Q., Gao, X., Ao, J. & Wang, C. (2017). MiR-139 suppresses β-casein synthesis and proliferation in bovine mammary epithelial cells by targeting the GHR and IGF1R signaling pathways. BMC Veterinary Research, 13(1), 350.
  • Do, D.N. & Ibeagha-Awemu, E.M. (2012). Non-coding RNA roles in ruminant mammary gland development and lactation, current topics in Lactation Isabel Gigli, IntechOpen, doi: 10.5772/67194. (Available from: https://www.intechopen.com/books/current-topics-inlactation/non-coding-rna-roles-in-ruminant-mammarygland-development-and-lactation).
  • Do, D.N., Li, R., Dudemaıne, P.L. & Ibeagha-Awemu, E.M. (2017). MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Scientific Reports, 7, 44605.
  • Food and Agriculture Organization of United Nation (Faostat): “Faostat 2016: The fresh goat milk production in worldwide.”, 14 Mayıs 2018 Tarihinde wep’den alındı, http://www.fao.org/faostat/en/#data/QL/visualize.
  • Galio, L., Droineau S., Yeboah P., Boudiaf H., Bouet S., Truchet S. & Devinoy E. (2013). MicroRNA in the ovine mammary gland during early pregnancy: spatial and temporal expression of miR-21, miR-205, and miR200. Physiology Genomics, 45(4), 151-161.
  • Gigli, I. & Maizon, D.O. (2013). MicroRNAs and the mammary gland: A new understanding of gene expression. Genetics and Molecular Biology, 36(4), 465-474.
  • Gu, Z.L., Eleswarapu, S. & Jiang, H.L. (2007). Identification and characterization of microRNAs from the bovine adipose tissue and mammary gland. FEBS Letters, 581(5), 981-988.
  • Hata, T., Murakami, K., Nakatani, H., Yamamoto, Y., Matsuda, T. & Aoki, N. (2010). Isolation of bovine milk-derived micro vesicles carrying mRNAs and microRNAs. Biochemical and Biophysical Research Communications, 396, 528-533.
  • Hou, J., An, X., Song, Y., Gao, T., Lei, Y. & Cao, B. (2015). Two mutations in the caprine MTHFR 3'UTR regulated by MicroRNAs are associated with milk production traits. PLoS One, 7, e0133015.
  • Hou, J., An, X., Song, Y., Cao, B., Yang, H., Zhang, Z., Shen, W. & Li Y. (2017). Detection and comparison of microRNAs in the caprine mammary gland tissues of colostrum and common milk stages. BMC Genetics, 18(1), 38.
  • Howard, K.M., Jatki Kusuma, R., Baier, S.R., Friemel, T., Markham, L., Vanamala, J. & Zempleni, J. (2015). Loss of miRNAs during processing and storage of cow's (Bos taurus) milk. Journal of Agricultural and Food Chemistry, 63(2), 588-592.
  • Izumi, H., Kosaka, N., Shimizu, T., Sekine, K., Ochiya, T. & Takase, M. (2012). Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. Journal of Dairy Science, 95, 4831-4841.
  • Jabed, A., Wagner, S., Mccracken, J., Wells, D.N. & Laible, G. (2012). Targeted microRNA expression in dairy cattle directs production of β-lactoglobulin-free, high-casein milk. In proceedings of the National Academy of Sciences of the United States of America. 109(42):16811-16816. doi:10.1073/pnas.1210057109.
  • Ji, Z., Wang, G., Xie, Z., Zhang, C. & Wang, J. (2012). Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Molecular Biology Reports, 39(10), 9361-9371.
  • Ji, Z., Wang, G., Zhang, C., Xie, Z., Liu, Z. & Wang J. (2013). Identification and function prediction of novel MicroRNAs in Laoshan Dairy Goats. Asian-Australas Journal of Animal Science, 26(3), 309-315.
  • Knight, C.H. & Peaker, M. (1982). Development of the mammary gland. Journal of Reproduction and Fertility, 65, 521-36.
  • Knight, C.H., Peaker, M. & Wilde, C.J. (1998). Local control of mammary development and function. Reviews of Reproduction, 3, 104-112.
  • Le Guillou, S., Marthey, S., Laloë, D., Laubier, J., Mobuchon, L., Leroux, C. & Le Provost F. (2014). Characterisation and comparison of lactating mouse and bovine mammary gland miRNomes, PLoS One, 9(3), e91938.
  • Lee, R.C., Feinbaum, R.L. & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 75, 843-854.
  • Li, H.M., Wang, C.M., Li, Q.Z., Gao, X.J. (2012). MiR-15a decreases bovine mammary epithelial cell, viability and lactation and regulates growth hormone receptor expression. Molecules, 17(10), 12037-12048.
  • Li, R., Dudemaine, P.L., Zhao, X., Lei, C. & Ibeagha-Awemu, E.M., (2016). Comparative analysis of the miRNome of bovine milk fat, whey and cells. PLoS One, 11(4), e0154129.
  • Li, Z., Lan, X., Guo, W., Sun, J., Huang, Y., Wang, J., Huang, T., Lei, C., Fang, X. & Chen, H., (2012a). Comparative transcriptome profiling of dairy goat microRNAs from dry period and peak lactation mammary gland tissues. PLoS One, 7(12), e52388.
  • Li, Z., Lan, X., Han, R., Wang, J., Huang, Y., Sun, J., Guo, W. & Chen H., (2017). miR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats. Scientific Reports, 7, 42627.
  • Li, Z., Liu, H., Jin, X., Lo, L. & Liu, J. (2012b). Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics, 13, 731.
  • Lin, X., Luo, J., Zhang, L., Wang, W. & Gou, D. (2013a). MiR103 controls milk fat accumulation in Goat (Capra hircus) mammary gland during lactation. PLoS One, 8(11), e79258.
  • Lin, X.Z., Luo, J., Zhang, L.P., Wang, W., Shi, H.B. & Zhu, J.J. (2013b). miR-27a suppresses triglyceride accumulation and affects gene mRNA expression associated with fat metabolism in dairy goat mammary gland epithelial cells. Gene, 521(1):15-23.
  • Liu, H.C., Hicks JA., Trakooljul, N. & Zhao, S.H., (2010). Current knowledge of microRNA characterization in agricultural animals. Animal Genetics, 41(3), 225-231.
  • miRBase (2018). The number of mature and precursor miRNA in ruminants. 30 Nisan 2018 Tarihinde wep’den alınmıştır, http://www.mirbase.org/cgi-bin/browse.pl.
  • mirTarbase (2018). The presence of miRNA according to the species, 30 Nisan 2018 Tarihinde wep’den alınmıştır, http://mirtarbase.mbc.nctu.edu.tw/php/index.php.
  • Mobuchon, L., Marthey, S., Boussaha, M., Le Guıllou, S., Leroux, C. & Le Provost, F. (2015). Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches. BMC Genomics, 16, 285.
  • Park, Y.W., Juárez, M., Ramos, M. & Haenlein, G.F.W. (2007). Physico-chemical characteristics of goat and sheep milk. Small Ruminant Research, 68(1-2), 88-113.
  • Peng, J., Zhao, J.S., Shen, Y.F., Mao, H.G. & Xu, N.Y. (2015). MicroRNA expression profiling of lactating mammary gland in divergent phenotype swine breeds. International Journal of Molecular Sciences, 16(1), 1448-1465.
  • Qiang-Zhang, L., Chun-Mei, W. & Xue-Jun, G. (2014). Role of miRNA in mammary gland development and lactation. Journal of Northeast Agriculture University, 21(1), 70- 74.
  • Silveri, L.G., Tilly, J.L., Vilotte, J.L. & Provost, F.L. (2006). MicroRNA involvement in mammary gland development and breast cancer. Reproduction Nutrition Development, 46(5), 549-556.
  • Wahid, F., Shehzad, A., Khan, T. & Kim, Y.Y. (2010). MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta, 1803(11), 1231-1243.
  • Wang, M., Moisá, S., Khan, M.J., Wang, J., Bu, D. & Loor, J.J. (2012). MicroRNA expression patterns in the bovine mammary gland are affected by stage of lactation. Journal of Dairy Science, 9, 6529 6535.
  • Wang, H., Luo, J., Zhang, T., Tian, H., Ma, Y., Xu, H., Yao, D. & Loor, J.J. (2016). MicroRNA-26a/b and their host genes synergistically regulate triacylglycerol synthesis by targeting the INSIG1 gene. RNA Biology, 13(5), 500-510.
  • Wightman, B., Ha, I. & Ruvkun, G., (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–862.
  • Winter, J., Jung, S., Keller, S., Gregory, R.I. & Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 11(3), 228-234.
  • Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., Li, J., Bian, Z., Liang, X., Cai, X. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of crosskingdom regulation by microRNA. Cell Research, 22, 107-126.
  • Zhou, Q., Li M., Wang, X., Li Q., Wang, T., Zhu, Q., Zhou, X., Wang, X., Gao, X. & Li X., (2012). Immune-related microRNAs are abundant in breast milk exosomes. International Journal of Biological Sciences, 8, 118-123.
APA DİNÇEL D, ARDIÇLI S, ŞAMLI H, BALCI F (2018). Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. , 124 - 130.
Chicago DİNÇEL Deniz,ARDIÇLI Sena,ŞAMLI Hale,BALCI Faruk Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. (2018): 124 - 130.
MLA DİNÇEL Deniz,ARDIÇLI Sena,ŞAMLI Hale,BALCI Faruk Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. , 2018, ss.124 - 130.
AMA DİNÇEL D,ARDIÇLI S,ŞAMLI H,BALCI F Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. . 2018; 124 - 130.
Vancouver DİNÇEL D,ARDIÇLI S,ŞAMLI H,BALCI F Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. . 2018; 124 - 130.
IEEE DİNÇEL D,ARDIÇLI S,ŞAMLI H,BALCI F "Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi." , ss.124 - 130, 2018.
ISNAD DİNÇEL, Deniz vd. "Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi". (2018), 124-130.
APA DİNÇEL D, ARDIÇLI S, ŞAMLI H, BALCI F (2018). Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES, 3(3), 124 - 130.
Chicago DİNÇEL Deniz,ARDIÇLI Sena,ŞAMLI Hale,BALCI Faruk Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES 3, no.3 (2018): 124 - 130.
MLA DİNÇEL Deniz,ARDIÇLI Sena,ŞAMLI Hale,BALCI Faruk Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES, vol.3, no.3, 2018, ss.124 - 130.
AMA DİNÇEL D,ARDIÇLI S,ŞAMLI H,BALCI F Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES. 2018; 3(3): 124 - 130.
Vancouver DİNÇEL D,ARDIÇLI S,ŞAMLI H,BALCI F Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi. JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES. 2018; 3(3): 124 - 130.
IEEE DİNÇEL D,ARDIÇLI S,ŞAMLI H,BALCI F "Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi." JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES, 3, ss.124 - 130, 2018.
ISNAD DİNÇEL, Deniz vd. "Sığır, Keçi ve Koyunlarda MikroRNA’ların (miRNA) Meme Bezi Gelişimi ve Süt Üretimine Etkisi". JOURNAL OF ANATOLIAN ENVIRONMENTAL AND ANIMAL SCIENCES 3/3 (2018), 124-130.