Yıl: 2020 Cilt: 3 Sayı: 1 Sayfa Aralığı: 27 - 32 Metin Dili: İngilizce DOI: 10.34088/kojose.663888 İndeks Tarihi: 01-02-2021

Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum

Öz:
Non-equilibrium Molecular Dynamics (NEMD) simulations have been created in C++ usingMessage Passing Interface (MPI) library to calculate the phonon thermal conductivity of baregraphene, aluminum, and graphene-coated aluminum. This study focuses on how graphene can alterthe thermal conductivity of graphene-coated aluminum. The effect of length, graphene, and thenumber of graphene layers are analyzed. Even though electrons are dominant on thermalconductivity of aluminum, the effect of graphene coating can be seen in the results. The resultsshow that the thermal conductivity of aluminum increases by up to 149% by graphene coating.When the number of layers increases to two layers, the thermal conductivity increases by up to261%. Moreover, the results increase with the length of all models.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Balandin A. A., 2009. Chill Out: New Materials and Designs Keep the Chips Cool. IEEE Spectrum, 46(10), pp. 28–33.
  • [2] Ghosh S., Calizo I., Teweldebrhan D., Pokatilov E. P., Nika D. L., Balandin A. A., Bao W., Miao F., Lau C. N., Ghosh S., Calizo I., Teweldebrhan D., Pokatilov E. P., Nika D. L., Balandin A. A., 2008. Extremely High Thermal Conductivity of Graphene: Prospects for Thermal Management Applications in Nanoelectronic Circuits. Applied Physics Letters, 92(15), p. 151911.
  • [3] Balandin A. A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C. N., 2008. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 8(3), pp. 902–907.
  • [4] Chen S., Moore A. L., Cai W., Suk J. W., An J., Mishra C., Amos C., Magnuson C. W., Kang J., Shi L., Ruoff R. S., 2011. Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments. ACS Nano, 5(1), pp. 321–328.
  • [5] Lee C., Wei X., Kysar J. W., Hone J., 2008. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science (New York, N.Y.) 321(5887), pp. 385–388.
  • [6] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., 2000. Electric Field Effect in Atomically Thin Carbon Films, doi: 10.1126/science.1102896.
  • [7] Jeon C. H., Jeong Y. H., Seo J. J., Tien H. N., Hong S. T., Yum Y. J., Hur S. H., Lee K. J., 2014. Material Properties of Graphene/Aluminum Metal Matrix Composites Fabricated by Friction Stir Processing. International Journal of Precision Engineering and Manufacturing, 15(6), pp. 1235-1239.
  • [8] Yan S. J., Yang C., Hong Q. H., Chen J. Z., Liu D. B., Dai S. L., 2014. Research of GrapheneReinforced Aluminum Matrix Nanocomposites. Cailiao Gongcheng/Journal of Materials Engineering, 0(4), pp. 1–6.
  • [9] Liu J., Khan U., Coleman J., Fernandez B., Rodriguez P., Naher S., Brabazon D., 2016. Graphene Oxide and Graphene Nanosheet Reinforced Aluminium Matrix Composites: Powder Synthesis and Prepared Composite Characteristics. Materials & Design, 94, pp. 87–94.
  • [10] Shin S. E., Choi H. J., Shin J. H., Bae D. H., 2015. Strengthening Behavior of Few-Layered Graphene/Aluminum Composites. Carbon, 82, pp. 143-151.
  • [11] Huang Y., Ouyang Q., Guo Q., Guo X., Zhang G., Zhang D., 2016. Graphite Film/Aluminum Laminate Composites with Ultrahigh Thermal Conductivity for Thermal Management Applications. Materials & Design, 90, pp. 508-515.
  • [12] Zheng Z., Liu Y., Bai Y., Zhang J., Han Z., Ren L., 2016. Fabrication of Biomimetic Hydrophobic Patterned Graphene Surface with Ecofriendly AntiCorrosion Properties for Al Alloy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 500, pp. 64-71.
  • [13] Zhang L., Hou G., Zhai W., Ai Q., Feng J., Zhang L., Si P., Ci L., 2018. Aluminum/Graphene Composites with Enhanced Heat-Dissipation Properties by in-Situ Reduction of Graphene Oxide on Aluminum Particles. Journal of Alloys and Compounds, 748, pp. 854-860.
  • [14] Liu J., Hua L., Li S., Yu M., 2015. Graphene Dip Coatings: An Effective Anticorrosion Barrier on Aluminum. Applied Surface Science, 327, pp. 241- 245.
  • [15] Han X., Huang Y., Gao Q., Yu M., Chen X., 2018. High Thermal Conductivity and Mechanical Properties of Nanotube@Cu/Ag@Graphite/ Aluminum Composites. Industrial & Engineering Chemistry Research, 57(31), pp. 10365-10371.
  • [16] Abhinav C., Reddy K. V. K., Raju G. G., Subramanyam K., 2017. Experimental Investigation of Graphene Coated Al Cuboid Crammed with PCM ` s for Efficient Thermal Energy Storage and Conversion. International Research Journal of Engineering and Technology, 4(12), pp. 396-402.
  • [17] Su R., Zhang X., 2018. Size Effect of Thermal Conductivity in Monolayer Graphene. Applied Thermal Engineering, 144, pp. 488-494.
  • [18] Cao A., 2012. Molecular Dynamics Simulation Study on Heat Transport in Monolayer Graphene Sheet with Various Geometries. Journal of Applied Physics, 111(8), p. 083528.
  • [19] Erturk A. S., Kirca M., Kirkayak L., 2018. Mechanical Enhancement of an Aluminum Layer by Graphene Coating. Journal of Materials Research 33(18), pp. 2741-2751.
  • [20] osé S., 1984. A nified Formulation of the Constant Temperature Molecular Dynamics Methods. The Journal of Chemical Physics, 81(1), pp. 511-519.
  • [21] Kumar S., 2017. Graphene Engendered 2-D Structural Morphology of Aluminium Atoms: Molecular Dynamics Simulation Study. Materials Chemistry and Physics, 202, pp. 329-339.
  • [22] Wei Z., Ni Z., Bi K., Chen M., Chen Y., 2011. InPlane Lattice Thermal Conductivities of Multilayer Graphene Films. Carbon, 49(8), pp. 2653-2658.
  • [23] Rajasekaran G., Kumar R., Parashar A., 2016. Tersoff Potential with Improved Accuracy for Simulating Graphene in Molecular Dynamics Environment. Materials Research Express, 3(3), p. 035011.
  • [24] Deyirmenjian V. B., Heine V., Payne M. C., Milman V., Lynden-Bell R. M., Finnis M. W., 1995. Ab Initio Atomistic Simulation of the Strength of Defective Aluminum and Tests of Empirical Force Models. Physical Review B, 52(21), pp. 15191-15207.
  • [25] Shibuta Y., Elliott J. A., 2011. Interaction between Two Graphene Sheets with a Turbostratic Orientational Relationship. Chemical Physics Letters, 512, pp. 146-150.
  • [26] Verlet L., 1967. omputer “ yeriments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(2), pp. 183-195.
  • [27] Anderson C. V. D. R., Tamma K. K., 2004. An Overview of Advances in Heat Conduction Models and Approaches for Prediction of Thermal Conductivity in Thin Dielectric Films. International Journal of Numerical Methods for Heat and Fluid Flow, 14(1), pp. 12-65.
  • [28] Jain A., McGaughey A. J. H., 2016. Thermal Transport by Phonons and Electrons in Aluminum, Silver, and Gold from First Principles. Physical Review B, 93(8), p. 081206.
  • [29] Chantrenne, Raynaud, Barrat, 2003. Study of Phonon Heat Transfer in Metallic Solids from Molecular Dynamics Simulations. Microscale Thermophysical Engineering, 7(2), pp. 117-136.
APA TOPRAK K, Yılmaz A (2020). Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. , 27 - 32. 10.34088/kojose.663888
Chicago TOPRAK KASIM,Yılmaz Ahmet Berk Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. (2020): 27 - 32. 10.34088/kojose.663888
MLA TOPRAK KASIM,Yılmaz Ahmet Berk Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. , 2020, ss.27 - 32. 10.34088/kojose.663888
AMA TOPRAK K,Yılmaz A Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. . 2020; 27 - 32. 10.34088/kojose.663888
Vancouver TOPRAK K,Yılmaz A Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. . 2020; 27 - 32. 10.34088/kojose.663888
IEEE TOPRAK K,Yılmaz A "Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum." , ss.27 - 32, 2020. 10.34088/kojose.663888
ISNAD TOPRAK, KASIM - Yılmaz, Ahmet Berk. "Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum". (2020), 27-32. https://doi.org/10.34088/kojose.663888
APA TOPRAK K, Yılmaz A (2020). Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. Kocaeli Journal of Science and Engineering, 3(1), 27 - 32. 10.34088/kojose.663888
Chicago TOPRAK KASIM,Yılmaz Ahmet Berk Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. Kocaeli Journal of Science and Engineering 3, no.1 (2020): 27 - 32. 10.34088/kojose.663888
MLA TOPRAK KASIM,Yılmaz Ahmet Berk Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. Kocaeli Journal of Science and Engineering, vol.3, no.1, 2020, ss.27 - 32. 10.34088/kojose.663888
AMA TOPRAK K,Yılmaz A Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. Kocaeli Journal of Science and Engineering. 2020; 3(1): 27 - 32. 10.34088/kojose.663888
Vancouver TOPRAK K,Yılmaz A Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum. Kocaeli Journal of Science and Engineering. 2020; 3(1): 27 - 32. 10.34088/kojose.663888
IEEE TOPRAK K,Yılmaz A "Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum." Kocaeli Journal of Science and Engineering, 3, ss.27 - 32, 2020. 10.34088/kojose.663888
ISNAD TOPRAK, KASIM - Yılmaz, Ahmet Berk. "Non-equilibrium Molecular Dynamics for Calculating the Thermal Conductivity of Graphene-Coated Aluminum". Kocaeli Journal of Science and Engineering 3/1 (2020), 27-32. https://doi.org/10.34088/kojose.663888