POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ

Yıl: 2020 Cilt: 8 Sayı: 3 Sayfa Aralığı: 479 - 498 Metin Dili: Türkçe DOI: 10.36306/konjes.620662 İndeks Tarihi: 10-02-2021

POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ

Öz:
Bu çalışmada, faz dönüşüm tekniği ile polivinil klorür (PVC) esaslı karbon nanotüp katkılınanokompozit membranlar hazırlanmıştır. En uygun membran reçetesinin belirlenmesi amacıyla enyüksek saf su akısı ve madde giderimini veren PVP/PVC/çözücü oranı araştırılmıştır. Farklı yüklemeoranlarında (%0,1-3,0, a/a) membran çözeltisine ilave edilen oksitlenmiş çok duvarlı karbon nanotüpler (oMWCNT) ile hazırlanan membranların özellikleri saf membranın özellikleriyle karşılaştırılmıştır.Hazırlanan membranların saf su geçirgenliği ve madde giderimi gibi filtrasyon performans özellikleribelirlenmiştir. Membranların morfolojik özellikleri (gözenekliliği, gözenek boyutu ve dağılımı) TaramalıElektron Mikroskobu (SEM) analizi, hidrofilikliği temas açısı ganyometresi, içerdiği fonksiyonel gruplarFourier Dönüşümlü Kızılötesi (FTIR) Spektroskopisi analizi, ısıl kararlılığı Termogravimetrik Analiz(TGA), mekanik dayanımı ise nanoindentasyon analizi ile tespit edilmiştir. Hidrofobik olan PVC esaslı safmembran matrisine eklenen o-MWCNT’lerin membran hidrofilikliğini arttırarak sadece geçirgenliği vemadde giderimini değil, aynı zamanda membranın yapısal özelliklerini de iyileştirdiği görülmüştür.Deneysel çalışmalardan, %0,5 o-MWCNT’leri içeren nanokompozit membranın en düşük temas açısı veen yüksek porositeye sahip olmasından dolayı, en yüksek akı (356 L/m2sa) ve madde giderimine (%95,6)sahip olduğu tespit edilmiştir.
Anahtar Kelime:

Performance Enhancement of Polyvinyl Chloride (PVC) Ultrafiltration Membrane by Incorporation of Multi-Walled Carbon Nanotubes

Öz:
In this study, polyvinyl chloride (PVC) based nanocomposite membranes incorporated with carbon nanotubes were fabricated using phase inversion technique. PVP/PVC/solvent ratio was investigated for the highest pure water flux and rejection in order to determine the most suitable membrane recipe. The properties of nanocomposite membranes fabricated in the presence of oxidized multiwalled carbon nanotubes (o-MWCNT) with varying loading levels (0.1-3.0%, by mass) were compared with those of pristine membranes. Filtration performance such as pure water flux and rejection values of the fabricated membranes were determined. Morphological properties (porosity, mean pore diameter and pore distribution), contact angles, functional groups, thermal stability and mechanical strength of the fabricated membranes were determined using Scanning Electron Microscopy (SEM), a contact angle ganiometer, Fourier Transform Infrared Spectroscopy (FTIR) and a nanoindenter, respectively. It has been demonstrated that incorporating hydrophilic o-MWCNTs into the hydrophobic polymeric matrix not only improved the permeability and rejection but also enhanced the membrane structural properties. The results revealed that addition of 0.5% o-MWCNTs into the casting solution provided the highest flux (356 L/m2h) and rejection rate (%95.6) due to having lowest contact angle and highest porosity
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aani, S. A., Gomez, V., Wright, C. J., Hilal, N., 2017. “Fabrication of Antibacterial Mixed Matrix Nanocomposite Membranes Using Hybrid Nanostructure of Silver Coated Multi-Walled Carbon Nanotubes”, Chemical Engineering Journal, Vol. 326, pp. 721-736.
  • Appenzeller, J., Martel, R., Derycke, V., Radosavljevic, M., Wind, S., Neumayer, D., 2002. “Carbon Nanotubes as Potential Building Blocks for Future Nanoelectronics”, Microelectronic Engineering, Vol. 64, No. 1-4, pp. 391-397.
  • Arthanareeswaran, G., Thanikaivelan, P., 2010. “Fabrication of Cellulose Acetate-Zirconia Hybrid Membrane for Ultrafiltration Applications: Performance, structure and fouling analysis”, Separation and Purification Technology, Vol. 74, No. 2, pp. 230-215.
  • Bhavsar, V., Tripathi, D., 2017. “Structural, Optical and Aging Studies of Biocompatible PVC-PVP Blend Films”, Journal of Adhesion Science and Technology, Vol. 38, No. 5, pp. 467-475.
  • Bhran, A., Shoaib, A., Elsade, D., El-Gendi, A., Abdallah, H., 2018. “Preparation of PVC/PVP Composite Polymer Membranes Via Phase Inversion Process for Water Treatment Purposes”, Chinese Journal of Chemical Engineering, Vol. 26, No. 4, pp. 715-722.
  • Bottino, A., Capannelli, G., Comite, A., 2002. “Preparation and Characterization of Novel Porous PVDFZrO2 Composite Membranes”, Desalination, Vol. 146, No. 1-3, pp. 35-40.
  • Celik, E., Park, H., Choi H., Choi, H., 2011. “Carbon Nanotube Blended Polyethersulfone Membranes for Fouling Control in Water Treatment”, Water Research, Vol. 45, No. 1, pp. 274-82.
  • Choi, J. H., Jegal, J., Kim, W. N., 2006. “Fabrication and Characterization of Multiwalled Carbon Nanotubes/Polymer Blend Membranes”, Journal of Membrane Science, Vol. 284 No. 1-2, pp. 406- 415.
  • Demirel, E., Zhang, B., Papakyriakou, M., Xia, S., Chen, Y., 2017. “Fe2O3 Nanocomposite PVC Membrane with Enhanced Properties and Separation Performance”, Journal of Membrane Science, Vol. 529, pp. 170-184.
  • Dong, J., Fredericks, P. M., George, G. A., 1997. “Studies of the Structure and Thermal Degradation of Poly(vinyl chloride)-Poly(N-vinyl-2-pyrrolidone) Blends by using Raman and FTIR Emission Spectroscopy”, Polymer Degradation and Stability, Vol. 58 No. 1-2, pp. 159-169.
  • Dünya Su Konseyi Raporu (World Water Council (WWC) Report), Urban Urgency, Water Caucus Summary, Marseille, France, 2007.
  • Dünya Su İyileştirme Raporu (World Water Development Report (WWDR)), Managing water under uncertainty and risk, http://unesdoc.unesco.org/images/0021/002156/215644e. pdf 2012, 2 Mayıs 2013.
  • Eitan, A., Jiang, K., Dukes, D., Andrews, R., Schadler, L. S., 2003. “Surface Modification of Multiwalled Carbon Nanotubes: Toward the Tailoring of the Interface in Polymer Composites”, Chemistry of Materials, Vol. 15, pp. 3198-3201.
  • Feller, J. F., Lu, J., Zhang, K., Kumar, B., Castro, M., Gattaand N., Choi, H. J., 2011. “Novel Architecture of Carbon Nanotube Decorated Poly (Eethyl Methacrylate) Microbead Vapour Sensors Assembled by Spray Layer by Layer”, Journal of Materials Chemistry, Vol. 21, No. 12, pp. 4142-4149.
  • Gao, W., Liang, H., Ma, J., Han, M., Chen, Z., Han, Z-S., Li, G.B., 2011. “Membrane Fouling Control in Ultrafiltration Technology for Drinking Water Production: A Review”, Desalination, Vol. 272, No. 1-3, pp. 1-8.
  • Goh, P. S., Ismail, A., Ng, B., 2013. “Carbon Nanotubes For Desalination: Performance Evaluation and Current Hurdles”, Desalination, Vol. 308, pp. 2-14.
  • Goh P. S., Ng B. C., Lau W. J., Ismail, A. F., 2015. “Inorganic Nanomaterials in Polymeric Ultrafiltration Membranes for Water Treatment, Separation and Purification Reviews, Vo. 44, pp. 216-249.
  • Han, M. J., Nam, S.T., 2002. “Thermodynamic and Rheological Variation in Polysulfone Solution by PVP and Its Effect in the Preparation of Phase Inversion Membrane, Journal of Membrane Science, Vol. 202, No. 1-2, pp. 55-61.
  • Hasan, M., Lee, M., 2014. “Enhancement of the Thermo-mechanical Properties and Efficacy of Mixing Technique in the Preparation of Graphene/PVC Nanocomposites Compared to Carbon Nanotubes/PVC”, Progress in Natural Science: Materials International, Vol. 24, No. 6, pp. 579-587.
  • Huang, Y., Jiao, W., Niu, Yue., Ding, G., Wang, R., 2018, “Improving the Mechanical Properties of Fe3O4/Carbon Nanotube Reinforced Nanocomposites by a Low-Magnetic-Field Induced Alignment”, Journal of Polymer Engineerig, Vol. 38, No. 8, pp. 731–738.
  • Kang, S., Asatekin, A., Mayes A., Elimelech, M., 2007, “Protein Antifouling Mechanisms of PAN UF Membranes Incorporating PAN-g-PEO Additive”, Journal of Membrane Science, Vol. 296, pp. 42- 50.
  • Kim, S. H., Kwak, S. Y., Sohn, B. H., Park, T. H., 2003. “Design of TiO2 Nanoparticle Self Assembled Aromatic Polyamide Thin-Film Composite (TFC) Membrane as an Approach to Solve Biofouling Problem”, Journal of Membrane Science, Vol. 211, No. 1, pp. 157-165.
  • Kong, J., Franklin, N. R., Zhou, C. W., Chapline, M. G., Peng, S., Dai, H. J., 2000. “Nanotube Molecular Wires as Chemical Sensors”, Science, Vol. 287, No. 5453, pp. 622-625.
  • Lee, S., Choi, B. G., Choi, D., Park, H. S., 2014. “Nanoindentation of Annealed Naf Ion/Sulfonated Graphene Oxide Nanocomposite Membranes for the Measurement of Mechanical Properties”, Journal of Membrane Science, Vol. 451, pp. 40-45.
  • Li, J. F., Xu, Z.L., Yang, H., Yu, L.Y., Liu, M., 2009. “Effect of TiO2 Nanoparticles on the Surface Morphology and Performance of Microporous PES Membrane”, Applied Surface Science, Vol. 255, No. 9, 4725- 4732.
  • Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., Huffman, C. B., Macias, F. R., Shon, Y. S., Lee, T. R., Colbert, D. T., Smalley, R. E., 1998. “Fullerene Pipes”, Science, Vol. 280, No. 5367, pp. 1253-1256.
  • Liu, B., Chen, C., Li, T., Crittenden, J., Chen, Y., 2013, “High Performance Ultrafiltration Membrane Composed of PVDF Blended with Its Derivative Copolymer PVDF-g-PEGMA”, Journal of Membrane Science, Vol. 445, pp. 66-75.
  • Low, Z. X., Wang, Z., Leong, S., Razmjou, A., Dumee, L. F., 2015. “Enhancement of the Antifouling Properties and Filtration Performance of Poly(ethersulfone) Ultrafiltration Membranes by Incorporation of Nanoporous Titania Nanoparticles”, Industrial Engineering Chemistry Research, Vol. 54, No. 44, pp. 11188-11198.
  • Lu, L. Y., Sun, H. L., Peng, F. B., Jiang, Z. Y., 2006. “Novel Graphite-Filled PVA/CS Hybrid Membrane for Pervaporation of Benzene/Cyclohexane Mixtures”, Journal of Membrane Science,Vol. 281, No. 1-2, pp. 245-252.
  • Ma, J., Zhao, Y., Xu, Z., Min, C., Zhou, B., Li, Y., Li, B., Niu, J., 2013,” Role of Oxygen-Containing Groups on MWCNTs in Enhanced Separation and Permeability Performance for PVDF Hybrid Ultrafiltration Membranes, Desalination, Vol. 320, pp. 1-9.
  • Mahdi, E., Chaudhuri, A. K., Tan, J. C., 2016. “Capture and Immobilisation of Iodine (I2) Utilising PolymerBased ZIF-8 Nanocomposite Membranes”, Molecular Systems Design & Engineering, No. 1, pp. 122-131.
  • Mahendran, R., Malaisamy, R., Mohan, D., 2004. “Cellulose Acetate and Polyethersulfone Blend Ultrafiltration Membranes. Part I. Preparation and Characterizations”, Polymer for Advanced Technologies, Vol. 15, No. 3, pp. 149-157.
  • Majumder, M., Corry, B., 2011. “Anomalous Decline of Water Transport in Covalently Modi- fied Carbon Nanotube Membranes”, Chemical Communications, Vol. 47, No. 27, pp. 7683-7685.
  • Merkel, T. C., Freeman, B. D., Spontak, R. J., He, Z., Pinnau, I., Meakin, P., Hill, A. J., 2002. “Ultrapermeable, Reverse-Selective Nanocomposite Membranes”, Science, Vol. 296, No. 5567, pp. 519-522.
  • Misra, R., Fu, B. X., Morgan, S. E., 2007. “Surface Energetics, Dispersion, and Nanotribomechanical Behavior of POSS/PP Hybrid Nanocomposites”, Journal of Polymer Science Part B: Polymer Physics, Vol. 45, No. 17, pp. 2441-2455.
  • Mulder M., 1991, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, Netherlands.
  • Norouzi, M., Pakizeh, M., Namvar-Mahboub, M., 2016, “The Effect of Highly Dispersed Oxidized Multiwalled Carbon Nanotubes on the Performance of PVDF/PVC Ultrafiltration Membranes, Desalination and Water Treatment, Vol. 57, pp. 24778-24787.
  • Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H., Gao, C., 2009. “Preparation and Properties of Functionalized Carbon Nanotube/PSF Blend Ultrafiltration Membranes”, Journal of Membrane Science, Vol. 342, No. 1-2, pp. 165-172.
  • Qu, L., Lin, Y., Hill, D. E., Zhou, B., Wang, W., Sun, X., Kitaygorodskiy, A., Suarez, M., Connell, J. W., Allard, L. F., Sun, Y. P.,, 2004. “Polyimide-Functionalized Carbon Nanotubes: Synthesis and Dispersion in Nanocomposite Films”, Macromolecules, Vol. 37, No. 16, pp. 6055-6060.
  • Rahimpour, A., Madaeni, S. S., Taheri, A. H., Mansourpanah, Y., 2008. “Coupling TiO2 Nanoparticles with UV Irradiation for Modification of Polyethersulfone Ultrafiltration Membranes”, Journal of Membrane Science, Vol. 313, No. 1-2, pp. 158-169.
  • Rahimpour, A., Jahanshahi, M., Khalili, S., Mollahosseini, A., Zirepour, A., Rajaeian, B., 2011. “Novel Functionalized Carbon Nanotubes for Improving the Surface Properties and Performance of Polyethersulfone (PES) Membrane”, Desalination, Vol. 286, pp. 99-107.
  • Roy, K. J., Anjali, T. V., Sujith, A., 2017, “Asymmetric Membranes Based on Poly(vinylchloride): Fffect of Molecular Weight of Additive and Solvent Power on the Morphology and Performance, Journal of Materials Science, Vol. 52, No. 10, pp. 5708-5725.
  • Sakintuna, B. Yurum, Y., 2005. “Templated Porous Carbons: A Review Article”, Industrial Engineering Chemistry Research, Vol. 44, No. 9, pp. 2893-2902.
  • Shah, P., Murthy, C. N., 2013. “Studies on the Porosity Control of MWCNT/Polysulfone Composite Membrane and Its Effect on Metal Removal”, Journal of Membrane Science, Vol. 437, pp. 90-98.
  • Singh, M., Mahto, S.K., Snehashish, D., Ranjan, A., Singh Kumar, S., Roy, P. Misra, N., 2015, “Chemical Modification of Poly(vinylchloride) for Blood and Cellular Biocompatibility, RCS Advances, Vol. 5, pp. 45231.
  • Stone, V., Nowack, B., Baun, A., Van den Brink, N., Von der Kammer, F., Dusinska, M., Handy, R., Hankin, S., Hassellov, M., Joner, E., Fernandes. T. F., 2010. “Nanomaterials for Environmental Studies: Classification, Reference Material Issues, and Strategies for Physicochemical Characterisation”, Science of the Total Environment, Vol. 408, No. 7, pp. 1745-1754.
  • Taurozzi, J. S, Arul, H., Bosak, V. Z. Burban, A. F, Voice, T. C., Bruening, M.L., Tarabara, V. V., 2008. “Effect of Filler Incorporation Route on the Properties of Polysulfone-Silver Nanocomposite Membranes of Different Porosities”, Journal of Membrane Science, Vol. 325, No. 1, pp. 58-68.
  • Uragami, T., Okazaki, K., Matsugi, H., Miyata, T., 2002. “Structure and Permeation Characteristics of an Aqueous Ethanol Solution of Organic–Inorganic Hybrid Membranes Composed of Poly(vinyl alcohol) and Tetraethoxysilane”, Macromolecules, Vol. 35, No. 24, pp. 9156-9163.
  • Vatanpour, V., Madaeni, S., Moradian, R., Zinadini, S., Astinchap, B., 2011. “Fabrication and Characterization of Novel Antifouling Nanofiltration Membrane Prepared from Oxidized Multiwalled Carbon Nanotube/Polyethersulfone Nanocomposite”, Journal of Membrane Science, Vol. 375, No. 1-2, pp. 284-294.
  • Wu, H., Tang, B., Wu, P., 2010. “Novel Ultrafiltration Membranes Prepared from a Multi-Walled Carbon Nanotubes/Polymer Composite”, Journal of Membrane Science, Vol. 362, No. 1-2, pp. 374-383.
  • Wu, H., Mansouri, J., Chen, V., 2013. “Silica Nanoparticles as Carriers of Antifouling Ligands for PVDF Ultrafiltration Membrane”, Journal of Membrane Science, Vol. 433, pp. 135-151.
  • Yin, Z. H., Liu, X., Su, Z. X., 2010, “Novel Fabrication of Silica Nanotubes Using Multi-waslled Carbon Nanotubes as Template, Bulletin of Material Science, Vol. 33, No. 4, pp. 351-355.
  • Zheng, S., Guo, Q., Mi, Y., 1999. “Characterization of Blends of Poly(vinylchloride) and Poly(N‐vinyl pyrrolidone) by FTIR and 13C CP/MAS NMR Spectroscopy”, Polymer Physics, Vol. 37, No. 17, pp. 2412-2419.
  • Zhu, K., Wang, G., 2018., “Fabrication of High-Performance Ultrafiltration Membranes using Zwitterionic Carbon Nanotubes and Polyethersulfone”, High Performance Polymers, Vol. 30, No. 5, pp. 602- 611.
APA Demirel E (2020). POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. , 479 - 498. 10.36306/konjes.620662
Chicago Demirel Elif POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. (2020): 479 - 498. 10.36306/konjes.620662
MLA Demirel Elif POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. , 2020, ss.479 - 498. 10.36306/konjes.620662
AMA Demirel E POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. . 2020; 479 - 498. 10.36306/konjes.620662
Vancouver Demirel E POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. . 2020; 479 - 498. 10.36306/konjes.620662
IEEE Demirel E "POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ." , ss.479 - 498, 2020. 10.36306/konjes.620662
ISNAD Demirel, Elif. "POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ". (2020), 479-498. https://doi.org/10.36306/konjes.620662
APA Demirel E (2020). POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. Konya mühendislik bilimleri dergisi (Online), 8(3), 479 - 498. 10.36306/konjes.620662
Chicago Demirel Elif POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. Konya mühendislik bilimleri dergisi (Online) 8, no.3 (2020): 479 - 498. 10.36306/konjes.620662
MLA Demirel Elif POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. Konya mühendislik bilimleri dergisi (Online), vol.8, no.3, 2020, ss.479 - 498. 10.36306/konjes.620662
AMA Demirel E POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. Konya mühendislik bilimleri dergisi (Online). 2020; 8(3): 479 - 498. 10.36306/konjes.620662
Vancouver Demirel E POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ. Konya mühendislik bilimleri dergisi (Online). 2020; 8(3): 479 - 498. 10.36306/konjes.620662
IEEE Demirel E "POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ." Konya mühendislik bilimleri dergisi (Online), 8, ss.479 - 498, 2020. 10.36306/konjes.620662
ISNAD Demirel, Elif. "POLİVİNİL KLORÜR (PVC) ULTRAFİLTRASYON MEMBRAN PERFORMANSININ ÇOK DUVARLI KARBON NANOTÜP KATKISI İLE İYİLEŞTİRİLMESİ". Konya mühendislik bilimleri dergisi (Online) 8/3 (2020), 479-498. https://doi.org/10.36306/konjes.620662