Yıl: 2020 Cilt: 7 Sayı: 1 Sayfa Aralığı: 125 - 142 Metin Dili: İngilizce DOI: 10.18596/jotcsa. 590621 İndeks Tarihi: 23-02-2021

Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method

Öz:
Developing technology and increasing the number of living creatures on Earth increasethe demand for biomaterials each passing day. Recently, biocomposites and biodegradablebiomaterials have begun to attract attention in many areas of use. Electrospinning technique ispreferred as a quite consolidated technique in the production of outstanding polymer and/ornanofiber matrixes. However, obtained biocomposite nanofibers can cause microbiologicalinfections during or after their usage. Therefore, it is very important that such materials havecontrolled antibacterial properties. In this study, Hydroxyapatite (HAp), known as biocompatibleand bioactive, was firstly synthesized by wet precipitation method. Molecular structure of obtainedHAp particles was researched by Fourier Transform Infrared Spectroscopy (FT-IR), its crystalstructure was analyzed by X-ray Diffraction analysis (XRD) and its morphology was investigated byScanning Electron Microscopy (SEM). HAp particles were combined with a mixture of biodegradablepolylactic acid (or polylactide, PLA) and polycaprolactone (PCL) and biocomposite nanofibers wereprepared by electrospinning method by loading chitosan and /or silver-based inorganicantimicrobial agent in different proportions to this composite structure. Molecular structure of PLAPCL polymer matrix was investigated by FT-IR analysis. The obtained biocomposites arecharacterized morphology (SEM analysis), thermal behavior (TGA analysis) and mechanicalproperties. In vitro degradation test is performed to evaluate anti-bacterial biocomposite nanofibers biodegradability. The anti-bacterial efficiency of biocomposite nano-fibers containing chitosanand/or Ag+ in different proportions was investigated against Escherichia coli (Gram-negative) andStaphylococcus aureus (Gram-positive) bacteria. The results showed increasing mechanicalproperties and thermal stability. Biocomposite nano-fibers containing 1% chitosan and 0.25% Ag+were found to have ≥4.78 log reduction and ≥99.99% reduction in the bacterial population againstthe tested bacterial species and showed strong antibacterial properties. It was also observed thatthe combination of Ag+ and chitosan may show synergistic effects. The results of the study confirmthe great potential of biodegradable, biocompatible and bioactive fibers for antibacterialapplication.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Leó B, Jansen JA. Thin calcium phosphate coatings for medical implants. Thin Calcium Phosphate Coatings for Medical Implants. 2009.
  • 2. Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TMG, Kowolik MJ, et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration - A materials perspective. Dent Mater [Internet]. 2012;28(7):703–21. Available from: http://dx.doi.org/10.1016/j.dental.2012.04.022
  • 3. Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;
  • 4. Hitti RA. Guided Bone Regeneration in the Oral Cavity: A Review. Open Pathol J. 2011;5(1):33– 45.
  • 5. Retzepi M, Donos N. Guided Bone Regeneration: Biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21(6):567– 76.
  • 6. Hämmerle, C.H. & Jung RE. Bone augmentation by means of barrier membranes. Periodontology. 2000;33:36–53.
  • 7. Sculean A, Nikolidakis D, Schwarz F. Regeneration of periodontal tissues: Combinations of barrier membranes and grafting materials - Biological foundation and preclinical evidence: A systematic review. J Clin Periodontol. 2008;35(SUPPL. 8):106– 16.
  • 8. Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G. Polymeric membranes for guided bone regeneration. Biotechnol J. 2011;6(10):1187– 97.
  • 9. Geurs NC, Korostoff JM, Vassilopoulos PJ, Kang T-H, Jeffcoat M, Kellar R, et al. Clinical and Histologic Assessment of Lateral Alveolar Ridge Augmentation Using a Synthetic Long-Term Bioabsorbable Membrane and an Allograft. J Periodontol. 2008;79(7):1133–40.
  • 10. Milella E, Barra G, Ramires PA, Leo G, Aversa P, Romito A. Poly(L-lactide)acid/alginate composite membranes for guided tissue regeneration. J Biomed Mater Res. 2001;57(2):248–57.
  • 11. Hirenkumar M, Steven S. Poly Lactic-coGlycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 2012;3(3):1–19.
  • 12. Vert M. Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules. 2005;6(2):538–46.
  • 13. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey MC. Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol [Internet]. 2019;125:307–60. Available from: https://doi.org/10.1016/j.ijbiomac.2018.12.002
  • 14. Patrício T, Domingos M, Gloria A, D’Amora U, Coelho JF, Bártolo PJ. Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyp J. 2014;20(2):145–56.
  • 15. Latthe SS, Imai H, Ganesan V, Rao AV. Superhydrophobic silica films by sol-gel co-precursor method. Appl Surf Sci. 2009;256(1):217–22.
  • 16. Patrício T, Bártolo P. Thermal stability of PCL/PLA blends produced by physical blending process. Procedia Eng [Internet]. 2013;59:292–7. Available from: http://dx.doi.org/10.1016/j.proeng.2013.05.124
  • 17. Broz ME, VanderHart DL, Washburn NR. Structure and mechanical properties of poly(D,L-lactic acid)/poly(ε-caprolactone) blends. Biomaterials. 2003;24(23):4181–90.
  • 18. Furukawa T, Matsusue Y, Yasunaga T, Nakagawa Y, Okada Y, Shikinami Y, et al. Histomorphometric study on high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. J Biomed Mater Res. 2000;50(3):410–9.
  • 19. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.
  • 20. Soundrapandian C, Sa B, Datta S. Organic– Inorganic Composites for Bone Drug Delivery. AAPS PharmSciTech. 2009;10(4):1158–71.
  • 21. Santos MH, Oliveira M de, Souza LP de F, Mansur HS, Vasconcelos WL. Synthesis control and characterization of hydroxyapatite prepared by wet precipitation process. Mater Res. 2006;7(4):625–30.
  • 22. Yelten-Yilmaz A, Yilmaz S. Wet chemical precipitation synthesis of hydroxyapatite (HA) powders. Ceram Int [Internet]. 2018;44(8):9703–10. Available from: https://doi.org/10.1016/j.ceramint.2018.02.201
  • 23. Monmaturapoj N. Nano-size Hydroxyapatite Powders Preparation by Wet-Chemical Precipitation Route Particle sizes and density were analyzed by. J Met aterials Miner. 2008;18(1):15–20.
  • 24. Chai CS, Ben-Nissan B. Bioactive nanocrystalline sol-gel hydroxyapatite coatings. J Mater Sci Mater Med. 1999;10(8):465–9.
  • 25. Liu DM, Troczynski T, Hakimi D. Effect of hydrolysis on the phase evolution of water-based solgel hydroxyapatite and its application to bioactive coatings. J Mater Sci Mater Med. 2002;13(7):657–65.
  • 26. Manafi SA, Joughehdoust S. Synthesis of Hydroxyapatite Nanostructure by Hydrothermal Condition for Biomedical Application. J Pharm Sci. 2009;5(2):89–94.
  • 27. Kimura I. Synthesis of Hydroxyapatite by Interfacial Reaction in a Multiple Emulsion. Res Lett Mater Sci. 2007;2007:1–4.
  • 28. Tas AC. Synthesis of biomimetic Cahydroxyapatite powders at 37 degrees C in synthetic body fluids. Biomaterials. 2000;21:1429–38.
  • 29. Thamaraiselvi T V., Prabakaran K, Rajeswari S. Synthesis of hydroxyapatite that mimic bone minerology. Trends Biomater Artif Organs. 2006;19(2):81–3.
  • 30. Shirkhanzadeh m. Direct formation of nanophase HAP on cathodically polarized electrodes.pdf. J Mater Sci Mater Med. 1998;9:67–72.
  • 31. Nayak AK. Hydroxyapatite synthesis methodologies: An overview. Int J ChemTech Res. 2010;2(2):903–7.
  • 32. Pham QP, Sharma U, Mikos AG. Review--- Electrospinning of Polymeric Nanofibers.pdf. 2006;12(5).
  • 33. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223–53.
  • 34. Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325–47.
  • 35. Tanaka K, Shiga T, Katayama T. Fabrication of hydroxyapatite/PLA composite nanofiber by electrospinning. High Perform Optim Des Struct Mater II. 2016;1(Hpsm):371–9.
  • 36. Gupta B, Revagade N, Anjum N, Atthoff B, Hilborn J. Preparation of poly(lactic acid) fiber by dryjet-wet-spinning. I. Influence of draw ratio on fiber properties. J Appl Polym Sci. 2006;100(2):1239–46.
  • 37. Kurtycz P, Karwowska E, Ciach T, Olszyna A, Kunicki A. Biodegradable polylactide (PLA) fiber mats containing Al2O3-Ag nanopowder prepared by electrospinning technique - Antibacterial properties. Fibers Polym. 2013;14(8):1248–53.
  • 38. Chou J, Ben-Nissan B, Green DW, Valenzuela SM, Kohan L. Targeting and dissolution characteristics of bone forming and antibacterial drugs by harnessing the structure of microspherical shells from coral beach sand. Adv Eng Mater. 2011;13(1–2):93–9.
  • 39. Karacan I, Macha IJ, Choi G, Cazalbou S, Ben-Nissan B. Antibiotic Containing Poly Lactic Acid/Hydroxyapatite Biocomposite Coatings for Dental Implant Applications. Key Eng Mater. 2017;758(September):120–5.
  • 40. Björling G, Johansson D, Bergström L, Strekalovsky A, Sanchez J, Frostell C, et al. Evaluation of central venous catheters coated with a noble metal alloy—A randomized clinical pilot study of coating durability, performance and tolerability. J Biomed Mater Res - Part B Appl Biomater. 2018;106(6):2337–44.
  • 41. Wu K, Yang Y, Zhang Y, Deng J, Lin C. A ntimicrobial activity and cytocompatibility of silver nanoparticles coated catheters via a biomimetic surface functionalization strategy. Int J Nanomedicine. 2015;10:7241–52.
  • 42. Knetsch MLW, Koole LH. New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers (Basel). 2011;3(1):340–66.
  • 43. Goy RC, Morais STB, Assis OBG. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth. Brazilian J Pharmacogn. 2016;26(1):122–7.
  • 44. Montazer M, Afjeh MG. Simultaneous Xlinking and antimicrobial finishing of cotton fabric. J Appl Polym Sci. 2007;103(1):178–85.
  • 45. Hablot E, Dharmalingam S, Hayes DG, Wadsworth LC, Blazy C, Narayan R. Effect of Simulated Weathering on Physicochemical Properties and Inherent Biodegradation of PLA/PHA Nonwoven Mulches. J Polym Environ. 2014;22(4):417–29.
  • 46. Chandrasekar A, Sagadevan S, Dakshnamoorthy A. Synthesis and characterization of nano-hydroxyapatite ( n-HAP ) using the wet chemical technique. Int J Phys Sci. 2013;8(32):1639– 45.
  • 47. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials [Internet]. 2006;27(15):2907–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16448693
  • 48. Grigorjeva L, Millers D, Smits K, Jankovica D, Pukina L. Characterization of hydroxyapatite by timeresolved luminescence and FTIR spectroscopy. IOP Conf Ser Mater Sci Eng. 2013;49(1).
  • 49. Qi H, Ye Z, Ren H, Chen N, Zeng Q, Wu X, et al. Bioactivity assessment of PLLA/PCL/HAP electrospun nanofibrous scaffolds for bone tissue engineering. Life Sci [Internet]. 2016;148:139–44. Available from:http://dx.doi.org/10.1016/j.lfs.2016.02.040
  • 50. Marei NH, El-Sherbiny IM, Lotfy A, El-Badawy A, El-Badri N. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Int J Biol Macromol. 2016;93:9–19.
  • 51. H. Hoidy W, B. Ahmad M, Jaffar Al- EA, Bt Ibrahim NA. Preparation and Characterization of Polylactic Acid/Polycaprolactone Clay Nanocomposites. Vol. 10, Journal of Applied Sciences. 2010. p. 97–106.
  • 52. Locardi B, Pazzaglia UE, Gabbi C, Profilo B. Thermal behaviour of hydroxyapatite intended for medical applications. Biomaterials. 1993;
  • 53. Pisani S, Dorati R, Conti B, Modena T, Bruni G, Genta I. Design of copolymer PLA-PCL electrospun matrix for biomedical applications. React Funct Polym [Internet]. 2018;124(July 2017):77–89. Available from: https://doi.org/10.1016/j.reactfunctpolym.2018.01.0 11
  • 54. Sim W, Barnard R, Blaskovich MAT, Ziora Z. Antimicrobial Silver in Medicinal and Consumer Applications: A Patent Review of the Past Decade (2007–2017). Antibiotics. 2018;7(4):93.
APA kesmez ö (2020). Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. , 125 - 142. 10.18596/jotcsa. 590621
Chicago kesmez ömer Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. (2020): 125 - 142. 10.18596/jotcsa. 590621
MLA kesmez ömer Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. , 2020, ss.125 - 142. 10.18596/jotcsa. 590621
AMA kesmez ö Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. . 2020; 125 - 142. 10.18596/jotcsa. 590621
Vancouver kesmez ö Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. . 2020; 125 - 142. 10.18596/jotcsa. 590621
IEEE kesmez ö "Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method." , ss.125 - 142, 2020. 10.18596/jotcsa. 590621
ISNAD kesmez, ömer. "Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method". (2020), 125-142. https://doi.org/10.18596/jotcsa. 590621
APA kesmez ö (2020). Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. Journal of the Turkish Chemical Society, Section A: Chemistry, 7(1), 125 - 142. 10.18596/jotcsa. 590621
Chicago kesmez ömer Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. Journal of the Turkish Chemical Society, Section A: Chemistry 7, no.1 (2020): 125 - 142. 10.18596/jotcsa. 590621
MLA kesmez ömer Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. Journal of the Turkish Chemical Society, Section A: Chemistry, vol.7, no.1, 2020, ss.125 - 142. 10.18596/jotcsa. 590621
AMA kesmez ö Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. Journal of the Turkish Chemical Society, Section A: Chemistry. 2020; 7(1): 125 - 142. 10.18596/jotcsa. 590621
Vancouver kesmez ö Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method. Journal of the Turkish Chemical Society, Section A: Chemistry. 2020; 7(1): 125 - 142. 10.18596/jotcsa. 590621
IEEE kesmez ö "Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method." Journal of the Turkish Chemical Society, Section A: Chemistry, 7, ss.125 - 142, 2020. 10.18596/jotcsa. 590621
ISNAD kesmez, ömer. "Preparation of Anti-bacterial Biocomposite Nanofibers Fabricated by Electrospinning Method". Journal of the Turkish Chemical Society, Section A: Chemistry 7/1 (2020), 125-142. https://doi.org/10.18596/jotcsa. 590621