Yıl: 2020 Cilt: 7 Sayı: 1 Sayfa Aralığı: 307 - 318 Metin Dili: İngilizce DOI: 10.18596/jotcsa. 634590 İndeks Tarihi: 23-02-2021

Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies

Öz:
In this study, a novel, low-cost, natural, and highly effective adsorbent, chitosan (Ch) -diatomite (D) composite was synthesized. Ch-D composite was tested as an effective and alternativeadsorbent for the removal of Pb2+ ions. The Ch-D composite was characterized by FT-IR, SEM-EDX andPZC analyses. The adsorption process of Pb2+ ions onto Ch-D as initial lead concentration, solution pH,temperature, contact time and recovery was investigated. From the adsorption process results, it hasbeen observed that the highest removal efficiency is approximately 95% at a contact time of 4-hour,initial Pb2+ concentration of 500 mg L-1 and agitation speed of 150 rpm at natural pH 4.0. The maximumPb2+ adsorption capacity from the Langmuir model was found as 0.154 mol kg-1 at 25 oC. Besides,adsorption kinetics was also explained with pseudo-first-order models. Adsorption thermodynamics haveshown that Pb2+ adsorption onto Ch-D is possible, spontaneous and exothermic. Ch-D composite canbecome an alternative adsorbent for the treatment of lead ions in the wastewater.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Paulino AT, Minasse FAS, Guilherme MR, Reis AV, Muniz EC, Nozaki J. Novel adsorbent based on silk worm chrysalides for removal of heavy metals from wastewaters. Journal of colloid and interface science 2006;301(2):479- 87.
  • 2. Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of environmental management. 2011;92(3):407- 18.
  • 3. Benito Y, Ruiz ML. Reverse osmosis applied to metal finishing wastewater. Desalination. 2002; 142(3):229-34.
  • 4. Al-Degs Y, Khraisheh MAM, Tutunji MF. Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Research. 2001;35(15):3724-8.
  • 5. Deng L, Du P, Yu W, Yuan P, Annabi-Bergaya F, Liu D, Zhou J. Novel hierarchically porous allophane/diatomite nanocomposite for benzene adsorption. Applied Clay Science. 2019;168:155-63.
  • 6. Senol ZM, Arslan DS, Simşek S. Preparation and characterization of a novel diatomitebased composite and investigation of its adsorption properties for uranyl ions. Journal of Radioanalytical and Nuclear Chemistry. 2019;321(3):791-803.
  • 7. Vakili M, Deng S, Liu D, Li T, Yu, G. Preparation of aminated cross-linked chitosan beads for efficient adsorption of hexavalent chromium. International journal of biological macromolecules. 2019;139:352-60.
  • 8. Fan L, Luo C, Sun M, Li X, Qiu H. Highly selective adsorption of lead ions by waterdispersible magnetic chitosan/graphene oxide composites, Colloids and Surfaces B: Biointerfaces. 2013;103:523-9.
  • 9. Senol ZM. Kitosan-Vermikülit Kompoziti Kullanılarak Sulu Çözeltiden Etkin Kurşun Giderimi: Denge, Kinetik ve Termodinamik Çalışmalar, Academic Platform Journal of Engineering and Science. 2020;8(1):15-21.
  • 10. Sun X, Peng B, Ji Y, Chen J, Li D. Chitosan(chitin)/cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE Journal. 2009;55(8):2062–2069.
  • 11. Gupta N, Kushwaha AK, Chattopadhyaya MC. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. Journal of the Taiwan Institute of Chemical Engineers, 2012;43(1):125-31.
  • 12. Tirtom VN, Dinçer A, Becerik S, Aydemir T, Çeli A. Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan– clay composite beads in aqueous solution. Chemical Engineering Journal, 2012;197:379- 86.
  • 13. Senol ZM, Gül ÜD, Şimşek S. Assessment of Pb2+ removal capacity of lichen (Evernia prunastri): application of adsorption kinetic, isotherm models. and thermodynamics. Environmental Science and Pollution Research. 2019;26(26):27002-13.
  • 14. Langmuir J. The adsorption of gases on plane surfaces of glass, mica and platinum I. Journal of the American Chemical Society. 1918;40:1361-1403.
  • 15. Helfferich F. Ion exchange. McGraw Hill. New York. 1962;166.
  • 16. Dubinin MM. The potential theory of adsorption of gases and vapors for adsorbents with energetically non-uniform surface. Chemical Reviews. 1960; 60:235–66.
  • 17. Hobson JP. Physical adsorption isotherms extending from ultra-high vacuum to vapor pressure. The Journal of physical chemistry. 1969;73:2720–7.
  • 18. Cui X, Hao H, Zhang C, He Z, Yang X. Science of the total environment capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars. Science of the Total Environment. 2016;539:566–75.
  • 19. Inyang M, Gao B, Ding W, Pullammanappallil P, Zimmerman AR, Cao X. Enhanced Lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Separation Science and Technology. 2011;46:1950–6.
  • 20. Sharma P, Tomar R. Synthesis and application of an analogue of mesolite for the removal of uranium (VI), thorium (IV), and europium (III) from aqueous waste. Microporous and Mesoporous Materials, 2008;116 (1-3):641-52.
  • 21. Sheng G, Hu J, Wang X. Sorption properties of Th (IV) on the raw diatomite—effects of contact time, pH, ionic strength and temperature. Applied Radiation and Isotopes, 2008; 66(10):1313-20.
  • 22. Khraisheh MA, Al-degs YS, Mcminn WA. Remediation of wastewater containing heavy metals using raw and modified diatomite. Chemical Engineering Journal. 2004;99(2):177-84.
  • 23. Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta. 2003;396(1- 2):153-66.
  • 24. Sprynskyy M, Kovalchuk I, Buszewski B. The separation of uranium ions by natural and modified diatomite from aqueous solution. Journal of Hazardous Materials. 2010; 181(1-3):700-7.
  • 25. Čerović LS, Milonjić SK, Todorovi, MB, Trtanj MI, Pogozhev YS, Blagoveschenskii Y, Levashov EA. Point of zero charge of different carbides. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007;297(1-3):1-6.
  • 26. Ngah WW, Teong L, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011;83(4):1446–56.
  • 27. Ska DK. Chitosan as an effective low-cost sorbent of heavy metal complexes with the polyaspartic acid. Chemical Engineering Journal, 2011;173:520-9.
APA Hasdemir Z, Şimşek S (2020). Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. , 307 - 318. 10.18596/jotcsa. 634590
Chicago Hasdemir Zeynep Mine,Şimşek Selçuk Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. (2020): 307 - 318. 10.18596/jotcsa. 634590
MLA Hasdemir Zeynep Mine,Şimşek Selçuk Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. , 2020, ss.307 - 318. 10.18596/jotcsa. 634590
AMA Hasdemir Z,Şimşek S Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. . 2020; 307 - 318. 10.18596/jotcsa. 634590
Vancouver Hasdemir Z,Şimşek S Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. . 2020; 307 - 318. 10.18596/jotcsa. 634590
IEEE Hasdemir Z,Şimşek S "Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies." , ss.307 - 318, 2020. 10.18596/jotcsa. 634590
ISNAD Hasdemir, Zeynep Mine - Şimşek, Selçuk. "Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies". (2020), 307-318. https://doi.org/10.18596/jotcsa. 634590
APA Hasdemir Z, Şimşek S (2020). Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry, 7(1), 307 - 318. 10.18596/jotcsa. 634590
Chicago Hasdemir Zeynep Mine,Şimşek Selçuk Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry 7, no.1 (2020): 307 - 318. 10.18596/jotcsa. 634590
MLA Hasdemir Zeynep Mine,Şimşek Selçuk Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry, vol.7, no.1, 2020, ss.307 - 318. 10.18596/jotcsa. 634590
AMA Hasdemir Z,Şimşek S Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry. 2020; 7(1): 307 - 318. 10.18596/jotcsa. 634590
Vancouver Hasdemir Z,Şimşek S Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of the Turkish Chemical Society, Section A: Chemistry. 2020; 7(1): 307 - 318. 10.18596/jotcsa. 634590
IEEE Hasdemir Z,Şimşek S "Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies." Journal of the Turkish Chemical Society, Section A: Chemistry, 7, ss.307 - 318, 2020. 10.18596/jotcsa. 634590
ISNAD Hasdemir, Zeynep Mine - Şimşek, Selçuk. "Removal of Pb2+ Ions from Aqueous Medium by Using ChitosanDiatomite Composite: Equilibrium, Kinetic, and Thermodynamic Studies". Journal of the Turkish Chemical Society, Section A: Chemistry 7/1 (2020), 307-318. https://doi.org/10.18596/jotcsa. 634590