Yıl: 2019 Cilt: 24 Sayı: 2 Sayfa Aralığı: 373 - 392 Metin Dili: Türkçe DOI: 10.17482/uumfd.519147 İndeks Tarihi: 28-04-2021

EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR

Öz:
Hızlı prototipleme ve üç boyutlu (3B) baskı adlarıyla da bilinen eklemeli imalat, geleneksel bilgisayar destekli üretimdeki talaş kaldırma prensibinin tersine malzemelerin birleştirilerek katmanlar halinde oluşturulup üst üste eklenmesi prensibine dayanan, serbest formlu ve karmaşık geometrili objelerin üretilmesine imkan sağlayan pratik bir imalat metodudur. Günümüzde daha çok 3B baskı olarak anılan bu yöntem, çatısı altında birçok farklı teknolojiyi barındırmaktadır. Ürünlerin farklı malzeme, mekanik ve geometrik özelliklerinden dolayı çeşitli eklemeli imalat teknolojileri geliştirilmiş ve ticarileştirilerek otomotiv, havacılık, biyomedikal, tıp, gıda, eğitim ve eğlence sektörlerinin kullanımına sunulmuştur. Bu yazıda eklemeli imalat teknolojileri ile ilgili detaylı bir derleme yapılmıştır. Bu kapsamda 3B baskı sürecindeki işlem adımları izah edilmiş, günümüzde kullanılan popüler 3B baskı teknolojilerinin çalışma prensipleri açıklanmış ve karşılaştırılmaları yapılmıştır. Güncel uygulama alanlarına da yer verilen bu yazıda 3B baskı teknolojilerine ait bazı püf noktaları ve gelecek yönelimlerinden de bahsedilmiştir.
Anahtar Kelime:

Additive Manufacturing (3D Printing): Technologies and Applications

Öz:
Additive manufacturing, also known as rapid prototyping and three-dimensional (3D) printing, is a practical method that enables the manufacturing of free-form objects with complex geometry, based on the principle of combining materials and building up layer-by-layer, in contrast to the subtractive manufacturing principle of the traditional computer-aided manufacturing. Nowadays, this method, which is mostly called 3D printing, collects many different technologies under its roof. Due to the different material, mechanical and geometric properties of the products, various additive manufacturing technologies have been developed, commercialized and introduced to the use of automotive, aerospace, biomedical, medical, food, education and entertainment sectors. In this paper, a comprehensive review of additive manufacturing technologies has been presented. In this context, general process steps of 3D printing and the working principles of the popular 3D printing technologies used today have been explained and compared to each other. Moreover, current application areas, some tips and future trends related to 3D printing technologies have been also mentioned in the paper.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Adamidis, O., Alber, S. ve Anastasopoulos, I. (2018). Investigation into 3D printing of granular media. Physical Modelling in Geotechnics, Proceedings of the 9th International Conference on Physical Modelling in Geotechnics, CRC Press, London, 113-118. doi:10.1201/9780429438660-9
  • 2. Agarwala, M., Bourell, D., Beaman, J., Marcus, H. ve Barlow, J. (1995). Direct selective laser sintering of metals. Rapid Prototyping Journal, 1(1), 26-36. doi:10.1108/13552549 510078113
  • 3. Asadollahi-Yazdi, E., Gardan, J. ve Lafon, P. (2016). Integrated design in additive manufacturing based on design for manufacturing. Int'l Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 10(6), 1104-1111.
  • 4. ASTM Committee F42 on Additive Manufacturing Technologies & ASTM Committee F42 on Additive Manufacturing Technologies. Subcommittee F42. 91 on Terminology. (2012). Standard terminology for additive manufacturing technologies. ASTM International. doi: 10.1520/F2792-09
  • 5. Beaman, J. J. ve Deckard, C. R. (1990). U.S. Patent No. 4,938,816. Washington, DC: U.S. Patent and Trademark Office.
  • 6. Calignano, F., Manfredi, D., Ambrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E. ve Fino, P. (2017). Overview on Additive Manufacturing Technologies. Proceedings of the IEEE, 105(4), 593-612. doi: 10.1109/JPROC.2016.2625098
  • 7. Canzi, P., Marconi, S., Manfrin, M., Magnetto, M., Carelli, C., Simoncelli, A. M. ve Benazzo, M. (2018). From CT scanning to 3D printing technology: a new method for the preoperative planning of a transcutaneous bone-conduction hearing device. Acta Otorhinolaryngologica Italica, 38, 251-256. doi: 10.14639/0392-100X-1625
  • 8. Chaput, C. ve Chartier, T. (2007, August). Fabrication of ceramics by stereolithography. RTejournal-Forum für Rapid Technologie, 4(1).
  • 9. Cheriachan, D. M., DiPaola, M., Iannotti, J. P. ve Ricchetti, E. T. (2019). 3D Printing in Orthopedics-Upper Extremity Arthroplasty. 3D Printing in Orthopaedic Surgery, 151-169. doi: 10.1016/b978-0-323-58118-9.00013-0
  • 10. Chua, C. K. ve Leong, K. F. (2014). 3D Printing and Additive Manufacturing: Principles and Applications (with Companion Media Pack) of Rapid Prototyping Fourth Edition. World Scientific Publishing Company.
  • 11. Crump, S. S. (1992). U.S. Patent No. 5,121,329. Washington, DC: U.S. Patent and Trademark Office.
  • 12. Cui, X., Boland, T., DD'Lima, D. ve K Lotz, M. (2012). Thermal inkjet printing in tissue engineering and regenerative medicine. Recent patents on drug delivery ve formulation, 6(2), 149-155. doi: 10.2174/187221112800672949
  • 13. Damianou, C., Giannakou, M., Yiallouras, C. ve Menikou, G. (2018). The role of three-dimensional printing in magnetic resonance imaging-guided focused ultrasound surgery. Digital Medicine, 4(1), 22. doi: 10.4103/digm.digm_48_17
  • 14. Danforth, S. C. ve Safari, A. (1996, August). Solid freeform fabrication: novel manufacturing opportunities for electronic ceramics. Applications of Ferroelectrics, 1996. ISAF'96., Proceedings of the Tenth IEEE International Symposium, 1, 183-188. doi:10.1109/isaf.1996.602732
  • 15. Dudek, P. F. D. M. (2013). FDM 3D printing technology in manufacturing composite elements. Archives of Metallurgy and Materials, 58(4), 1415-1418. doi:10.2478/amm-2013-0186
  • 16. Dupláková, D., Hatala, M., Duplák, J., Radchenko, S. ve Steranka, J. (2018). Direct Metal Laser Sintering–Possibility of Application in Production Process. Science and Research Journal, 1(4), 123-127. doi:10.18421/SAR14-01
  • 17. Durgun, I. (2015). Sheet metal forming using FDM rapid prototype tool. Rapid Prototyping Journal, 21(4), 412-422. doi:10.1108/rpj-01-2014-0003
  • 18. Fetvaci, M. C. (2017). Determination of effective involute parameter limit in generation simulation of gears manufactured by rack-type cutters. Mechanics & Industry, 18(4), 405. doi: 10.1051/meca/2017028
  • 19. Frazier, W. E. (2014). Metal additive manufacturing: a review. Journal of Materials Engineering and Performance, 23(6), 1917-1928. doi:10.1007/s11665-014-0958-z
  • 20. Garg, A., Bhattacharya, A. ve Batish, A. (2016). On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Materials and Manufacturing Processes, 31(4), 522-529. doi:10.1080/10426914.2015.1070425
  • 21. Gosselin, C., Duballet, R., Roux, P., Gaudillière, N., Dirrenberger, J. ve Morel, P. (2016). Large-scale 3D printing of ultra-high performance concrete–a new processing route for architects and builders. Materials ve Design, 100, 102-109. doi:10.1016/j.matdes.2016.03.097
  • 22. Goyanes, A., Kobayashi, M., Martínez-Pacheco, R., Gaisford, S. ve Basit, A. W. (2016). Fused-filament 3D printing of drug products: microstructure analysis and drug release characteristics of PVA-based caplets. International journal of pharmaceutics, 514(1), 290-295. doi:10.1016/j.ijpharm.2016.06.021
  • 23. Guillotin, B., Souquet, A., Catros, S., Duocastella, M., Pippenger, B., Bellance, S. ve Guillemot, F. (2010). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials, 31(28), 7250-7256. doi:10.1016/j.biomaterials. 2010.05.055
  • 24. Han, Y., Wang, F., Wang, H., Jiao, X. ve Chen, D. (2018). High-strength boehmite-acrylate composites for 3D printing: Reinforced filler-matrix interactions. Composites Science and Technology, 154, 104-109. doi:10.1016/j.compscitech.2017.10.026
  • 25. Hanssen, J., Moe, Z. H., Tan, D. ve Chien, O. Y. (2013). Rapid Prototyping in Manufacturing. Handbook of Manufacturing Engineering and Technology, 1-16.
  • 26. Hornbeck, L. J. (1991). U.S. Patent No. 5,061,049. Washington, DC: U.S. Patent and Trademark Office.
  • 27. http://www.3dnatives.com/en/polyjet100420174/, EriĢim Tarihi: 07.08.2018, Konu: Polijet teknolojisi.
  • 28. https://amtech3d.com/3d-printing-techniques/, EriĢim Tarihi: 02.06.2019, Konu: Direk Işık İşleme.
  • 29. http://www.custompartnet.com/wu/fused-deposition-modeling/, EriĢim Tarihi: 02.06.2019, Konu: Eriyik Yığarak Modelleme.
  • 30. https://prattparametrics.com/2017/09/18/3d-printing-research-6/, EriĢim Tarihi: 02.06.2019, Konu: 3B baskı teknolojileri.
  • 31. https://www.sculpteo.com/media/ebook/State_of_3DP_2018.pdf, EriĢim Tarihi: 10.11. 2018, Konu: 3B baskı teknolojileri.
  • 32. Huang, R., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S. ve Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559-1570. doi:10.1016/j.jclepro.2015.04.109
  • 33. Hull, C. W. (1986). U.S. Patent No. 4,575,330. Washington, DC: U.S. Patent and Trademark Office.
  • 34. Jacobs, P. F. (1992). Fundamentals of stereolithography. 1992 International Solid Freeform Fabrication Symposium.
  • 35. Kang, H. W., Lee, S. J., Ko, I. K., Kengla, C., Yoo, J. J. ve Atala, A. (2016). A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nature biotechnology, 34(3), 312. doi:10.1038/nbt.3413
  • 36. Khan, H. M., Dirikolu, M. H., & Koç, E. (2018). Parameters optimization for horizontally built circular profiles: Numerical and experimental investigation. Optik, 174, 521-529. doi: 10.1016/j.ijleo.2018.08.095
  • 37. Kim, M. K., Kim, J. H., Park, S. E. ve BACK, S. A. (2018). U.S. Patent Application No. 15/745,736.
  • 38. Krinitcyn, M., Fu, Z., Harris, J., Kostikov, K., Pribytkov, G. A., Greil, P. ve Travitzky, N. (2017). Laminated Object Manufacturing of in-situ synthesized MAX-phase composites. Ceramics International, 43(12), 9241-9245. doi:10.1016/j.ceramint.2017.04 .079
  • 39. Kumar, S., Choudhary, A. K. S., Singh, A. K., Gupta, A. K., Kumar, S., Choudhary, A. K. S. ve Gupta, A. K. (2016). A Comparison of Additive Manufacturing Technologies. IJIRST-International Journal for Innovative Research in Science ve Technology, 3(01), 06.
  • 40. Lipton, J. I., Cutler, M., Nigl, F., Cohen, D. ve Lipson, H. (2015). Additive manufacturing for the food industry. Trends in food science ve technology, 43(1), 114-123. doi:10.1016/j.tifs.2015.02.004
  • 41. Long, J., Gholizadeh, H., Lu, J., Bunt, C. ve Seyfoddin, A. (2017). Application of fused deposition modelling (FDM) method of 3D printing in drug delivery, Current pharmaceutical design, 23(3), 433-439. doi:10.2174/1381612822666161026162707
  • 42. Markovıć, V. ve Žıvkovıć, P. (2016). 3D printing–challenges and perspectives, International Scientific Journal of Technical Sciences, 60-67.
  • 43. McMenamin, P. G., Quayle, M. R., McHenry, C. R. ve Adams, J. W. (2014). The production of anatomical teaching resources using three‐dimensional (3D) printing technology. Anatomical sciences education, 7(6), 479-486. doi:10.1002/ase.1475
  • 44. Meiners, W., Wissenbach, K. ve Gasser, A. (2001). U.S. Patent No. 6,215,093. Washington, DC: U.S. Patent and Trademark Office.
  • 45. Mostafaei, A., Stevens, E. L., Ference, J. J., Schmidt, D. E. ve Chmielus, M. (2017). Binder jet printing of partial denture metal framework from metal powder. Mater. Sci. Technol., 289-291. doi:10.7449/2017mst/2017/mst_2017_289_291
  • 46. Murphy, S. V. ve Atala, A. (2014). 3D bioprinting of tissues and organs. Nature biotechnology, 32(8), 773. doi:10.1038/nbt.2958
  • 47. Murr, L. E., Amato, K. N., Li, S. J., Tian, Y. X., Cheng, X. Y., Gaytan, S. M. ve Wicker, R. B. (2011). Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting. Journal of the mechanical behavior of biomedical materials, 4(7), 1396-1411. doi:10.1016/j.jmbbm.2011 .05.010
  • 48. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. ve Hui, D. (2018). Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering. doi:10.1016/j.compositesb.2018.02.012
  • 49. Niaki, M. K. ve Nonino, F. (2018). The Management of Additive Manufacturing. Springer.doi: 10.1007/978-3-319-56309-1
  • 50. Oropallo, W. ve Piegl, L. A. (2016). Ten challenges in 3D printing, Engineering with Computers, 32(1), 135-148. doi:10.1007/s00366-015-0407-0
  • 51. Ortes, F., Surmen, H. K. ve Arslan, Y. Z. (2016). A bıomechatronıc applıcatıon on prosthetıcs for undergraduate engıneerıng students. The Eurasia Proceedings of Educational & Social Sciences, 4, 461-464.
  • 52. Panwar, A. ve Tan, L. P. (2016). Current status of bioinks for micro-extrusion-based 3D bioprinting. Molecules, 21(6), 685. doi:10.3390/molecules21060685
  • 53. Ramya, A. ve Vanapalli, S. L. (2016). 3D printing technologies in various applications. International Journal of Mechanical Engineering and Technology, 7(3), 396-409.
  • 54. Richardson, M. ve Haylock, B. (2012). Designer/maker: the rise of additive manufacturing, domestic-scale production and the possible implications for the automotive industry. Computer-Aided Design ve Applications PACE, 2, 33-48. doi: 10.3722/cadaps. 2012.pace.33-48
  • 55. Singh, S., Ramakrishna, S. ve Singh, R. (2017). Material issues in additive manufacturing: A review. Journal of Manufacturing Processes, 25, 185-200. doi:10.1016/j.jmapro.2016 .11.006
  • 56. Swanson, W. J., Mannella, D. F. ve Schloesser, R. G. (2013). U.S. Patent No. 8,459,280. Washington, DC: U.S. Patent and Trademark Office.
  • 57. Tack, P., Victor, J., Gemmel, P. ve Annemans, L. (2016). 3D-printing techniques in a medical setting: a systematic literature review. Biomedical engineering online, 15(1), 115. doi:10.1186/s12938-016-0236-4
  • 58. Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D. ve Samulski, E. T. (2015). Continuous liquid interface production of 3D objects. Science, 2397. doi:10.1126/science.aaa2397
  • 59. Udroiu, R., ve Braga, I. C. (2017). Polyjet technology applications for rapid tooling, MATEC Web of Conferences, 112, 3011. doi:10.1051/matecconf/201711203011
  • 60. Vaezi, M., Seitz, H. ve Yang, S. (2013). A review on 3D micro-additive manufacturing technologies. The International Journal of Advanced Manufacturing Technology, 67(5-8), 1721-1754. doi:10.1007/s00170-013-4962-5
  • 61. Vaupotic, B., Brezocnik, M. ve Balic, J. (2006). Use of PolyJet technology in manufacture of new product. Journal of Achievements in Materials and Manufacturing Engineering, 18(1-2), 319-322.
  • 62. Wang, Y. C., Chen, T. ve Yeh, Y. L. (2018). Advanced 3D printing technologies for the aircraft industry: a fuzzy systematic approach for assessing the critical factors. The International Journal of Advanced Manufacturing Technology, 1-11. doi:10.1007/s00170-018-1927-8
  • 63. Wohlers Report 2018, 2018. Wohlers Associates.
  • 64. Wohlers, T. ve Gornet, T. (2014). History of additive manufacturing. Wohlers report, 24(2014), 118.
  • 65. Wong, K. V. ve Hernandez, A. (2012). A review of additive manufacturing. ISRN Mechanical Engineering. 2012. doi:10.5402/2012/208760
  • 66. Wu, W., Jiang, J., Jiang, H., Liu, W., Li, G., Wang, B. ve Zhao, J. (2018). Improving bending and dynamic mechanics performance of 3D printing through ultrasonic strengthening. Materials Letters, 220, 317-320. doi:10.1016/j.matlet.2018.03.048
  • 67. Yan, X. ve Gu, P. E. N. G. (1996). A review of rapid prototyping technologies and systems. Computer-Aided Design, 28(4), 307-318. doi:10.1016/0010-4485(95)00035-6
  • 68. Yang, Y. ve Li, L. (2018). Cost modeling and analysis for Mask Image Projection Stereolithography additive manufacturing: Simultaneous production with mixed geometries. International Journal of Production Economics, 206, 146-158. doi:10.1016 /j.ijpe.2018.09.023
  • 69. Zhang, B., Luo, Y., Ma, L., Gao, L., Li, Y., Xue, Q. ve Cui, Z. (2018). 3D bioprinting: an emerging technology full of opportunities and challenges. Bio-Design and Manufacturing, 1-12. doi:10.1007/s42242-018-0004-3
  • 70. Zhang, Z. Y., Jhong, K. J., Cheng, C. W., Huang, P. W., Tsai, M. C. ve Lee, W. H. (2016). Metal 3D printing of synchronous reluctance motor. Industrial Technology (ICIT), 2016 IEEE International Conference, 1125-1128. doi:10.1109/icit.2016.7474912
APA SÜRMEN H (2019). EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. , 373 - 392. 10.17482/uumfd.519147
Chicago SÜRMEN Hasan Kemal EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. (2019): 373 - 392. 10.17482/uumfd.519147
MLA SÜRMEN Hasan Kemal EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. , 2019, ss.373 - 392. 10.17482/uumfd.519147
AMA SÜRMEN H EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. . 2019; 373 - 392. 10.17482/uumfd.519147
Vancouver SÜRMEN H EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. . 2019; 373 - 392. 10.17482/uumfd.519147
IEEE SÜRMEN H "EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR." , ss.373 - 392, 2019. 10.17482/uumfd.519147
ISNAD SÜRMEN, Hasan Kemal. "EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR". (2019), 373-392. https://doi.org/10.17482/uumfd.519147
APA SÜRMEN H (2019). EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 373 - 392. 10.17482/uumfd.519147
Chicago SÜRMEN Hasan Kemal EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24, no.2 (2019): 373 - 392. 10.17482/uumfd.519147
MLA SÜRMEN Hasan Kemal EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol.24, no.2, 2019, ss.373 - 392. 10.17482/uumfd.519147
AMA SÜRMEN H EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2019; 24(2): 373 - 392. 10.17482/uumfd.519147
Vancouver SÜRMEN H EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2019; 24(2): 373 - 392. 10.17482/uumfd.519147
IEEE SÜRMEN H "EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR." Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24, ss.373 - 392, 2019. 10.17482/uumfd.519147
ISNAD SÜRMEN, Hasan Kemal. "EKLEMELİ İMALAT (3B BASKI): TEKNOLOJİLER VE UYGULAMALAR". Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 24/2 (2019), 373-392. https://doi.org/10.17482/uumfd.519147