Yıl: 2020 Cilt: 25 Sayı: 2 Sayfa Aralığı: 1117 - 1136 Metin Dili: Türkçe DOI: 10.17482/uumfd.696952 İndeks Tarihi: 30-04-2021

YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ

Öz:
Bu çalışma, mimarlık alanında kullanılan eklemeli imalat teknolojileri konusunda gerçekleştirilen bir derleme çalışmasıdır. Temel olarak, eklemeli imalatın mimarlık alanındaki uygulama alanlarını, belirli sistematik içerisinde ele alan araştırma, gerek literatürde yer alan örnekler, gerekse uygulamaları bulunan yeni teknolojiler hakkında bilgi vermeyi amaçlamaktadır. Çalışmada, karşılaştırmalı olarak incelenen üretim teknolojilerinin güçlü ve zayıf yönleri, sistemlerin kullanım alanları, sistemlerde kullanılan malzemeler, mimari alan uygulamaları özelinde ele alınmıştır. Eklemeli imalat teknolojilerinin dezavantajlarından birisi olarak bilinen yüksek üretim ve malzeme maliyetinin, zaman içerisinde üretim yöntemlerinin yaygınlaşması ile çözümleneceği öngörülmektedir. Malzeme üretimi ve teknoloji konusunda halen gelişme sürecinde olan eklemeli imalat üretim sistemleri, gelecek endüstri uygulamalarında ve mimarisinde etkin olarak kullanılacağı düşünülmektedir. Yüksek maliyet sorununa çözüm olarak, eklemeli imalat yöntemi ile kalıp üretimlerinin ilerleyen yıllarda daha fazla gündemde olacağı öngörülmektedir.
Anahtar Kelime:

A Review of Additive Manufacturing Technologies in Building Production

Öz:
This study is a review on additive manufacturing technologies used in the field of architecture.Basically, the research, which deals with the application fields of additive manufacturing in the field ofarchitecture, within a certain systematic, aims to provide information on both the examples in the literatureand new technologies with applications. In the study, the strengths and weaknesses of the production technologies analyzed comparatively, the usageareas of the systems, the materials used in the systems, and architectural field applications are discussed. Itis anticipated that the high production and material costs, known as one of the disadvantages of additivemanufacturing technologies, will be developed over time with the spread of production methods. Additivemanufacturing production systems, which are still in the development process in material production andtechnology, are thought to be used effectively in future industry applications and architecture. As a solutionto the high cost problem, it is anticipated that mold production will be on the agenda in the coming yearswith additive manufacturing method.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Abdel-Rahman, A. ve Elnaz, T. (2018) Heat-Actuated Auxetic Facades, In Facade Techtonics 2018 World Congress Los Angeles, Los Angeles: Facade Techtonics 2018 World Congress, Los Angeles.
  • 2. Adikari, A. (2018). New 3D Printable Polymeric Materials for Fused Filament Fabrication (FFF), PhD Thesis. The University of Texas,Texas.
  • 3. Alwoimi, B. (2018). Development of a Framework for Design for Additive Manufacturing, PhD Thesis. North Carolina A&T State University,Greensboro. And Archaeological Sciences 1 (1), 17. doi:10.32474/JAAS.2019.01.000102
  • 4. Brischetto ve diğ. (2017) Special Issue on Additive Manufacturing Technologies and Applications, Technologies MDPI 5(3), 58. doi.org/10.3390/technologies5030058
  • 5. Buswell, R. ve diğ. (2018) 3D Printing Using Concrete Extrusion: A Roadmap for Research, Cement ve Concrete Research, 112, 37–49. doi.org/10.1016/j.cemconres.2018.05.006
  • 6. Caliskan, C.I. (2019) Historical Silahtaraga Power Plant-Black Sea Decovil Line Research, Double Military Decovil Photogrammetry Study, Journal Of Anthropological
  • 7. Castaneda, E. ve diğ. (2015) Free-Form Architectural Envelopes: Digital Processes Opportunities of Industrial Production at a Reasonable Price, Journal of Facade Design and Engineering, 3(1), 1–13. doi: 10.3233/FDE-150031
  • 8. Ceccanti, F. ve diğ. (2010) 3D Printing Technology for a Moon Outpost Exploiting Lunar Soil, Int. 61st International Astronautical Congress, Prague, CZ, IAC-10-D3, 1–9.
  • 9. Chang, H. ve diğ. (1998) Computer models as support for complex negotiaitions, International Conference of the Society for General System Research, Hungarian Academy of Science, Budapest, 40-48. doi:11.3267/2553/8911.324.260.
  • 10. Craveiroa, F. ve diğ. (2019) Additive Manufacturing as an Enabling Technology for Digital Construction: A Perspective on Construction 4.0., Sustainable Development, 4, 6. doi.org/10.1016/j.autcon.2019.03.011
  • 11. Çelik, K. ve Özkan A. (2017) Eklemeli İmalat Yöntemleri ile Üretim ve Onarım Uygulamaları, Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 5(1), 107–21.
  • 12. Drotman, D. (2015). Design of a Screw Extruder for Additive Manufacturing, Master Thesis, University of California, San Diego.
  • 13. Edouard C. (2017) TerraPerforma Is the Last Stage of the Open Thesis Fabrication Program in 2016-2017. Erişim Adresi: http://www.iaacblog.com/programs/terra-performa/ Erişim Tarihi:02.06.2020.
  • 14. Elhoone, H. (2018). Smart Decision Support for Cyber Additive Design and Manufacturing, PhD Thesis, North Carolina Agricultural and Technical State University, Greensboro.
  • 15. Formlabs (2020). 3D Printing Technology Comparison: FDM vs. SLA vs. SLS. Erişim Adresi: https://formlabs.com/blog/fdm-vs-sla-vs-sls-how-to-choose-the-right-3d-printingtechnology/ Erişim Tarihi:02.06.2020.
  • 16. Gaget, L. (2020). 3D Printing for Construction: What Is Contour Crafting?. Erişim Adresi: https://www.sculpteo.com/blog/2018/06/27/3d-printing-for-construction-what-is-contourcrafting/ Erişim Tarihi:02.06.2020.
  • 17. Gardiner, J. (2011). Exploring the Emerging Design Territory of Construction 3D Printing Project Led Architectural Research, PhD Thesis, RMIT University, Melbourne.
  • 18. Gosselin, C. ve diğ. (2016) Large-Scale 3D Printing of Ultra-High Performance Concrete–a New Processing Route for Architects and Builders, Materials & Design, 100, 102–9. doi.org/10.1016/j.matdes.2016.03.097
  • 19. Grassi, G. (2019) Fabrication and Durability Testing of a 3D Printed Façade for Desert Climates, Additive Manufacturing, 28, 439–44. doi.org/10.1016/j.addma.2019.05.023
  • 20. Guo, N. ve diğ. (2013) Additive Manufacturing: Technology, Applications and Research Needs, Frontiers of Mechanical Eng., 8(3), 215–43. doi: 10.1007/s11465-013-0248-8
  • 21. Hager, I. ve diğ. (2016) 3D Printing of Buildings and Building Components as the Future of Sustainable Construction, Procedia Engineering, 151, 292–99. doi: : 10.1016/j.proeng.2016.07.357
  • 22. Hamidi, F. ve diğ. (2019.) Additive Manufacturing of Cementitious Composites: Materials, Methods, Potentials, and Challenges, Construction and Building Materials, 218, 582–609. doi.org/10.1016/j.conbuildmat.2019.05.140
  • 23. Khoshnevis, B. ve diğ. (2012) Contour Crafting Simulation Plan for Lunar Settlement Infrastructure Buildup In Earth and Space 2012, Engineering, Science, Construction, and Operations in Challenging Environments,1458–67. doi: 10.1061/9780784412190.155
  • 24. Kidwell, J. (2017) Best Practices and Applications of 3D Printing in the Construction Industry, Construction Management,79. https://digitalcommons.calpoly.edu/cmsp/79
  • 25. Knaack, U. ve diğ. (2018) Parametric Nodes from Idea to Realization, Facade 2018-Adaptive. http://resolver.tudelft.nl/uuid:9edf6faa-d3de-410d-97b1-0fa563ac9192
  • 26. Leach, N. (2014) 3D Printing in Space, Architectural Design, 84(6), 108–13. doi.org/10.1002/ad.1840
  • 27. Lim, S. ve diğ. (2009) Fabricating Construction Components Using Layered Manufacturing Technology, In Global Innovation in Construction Conference, 512–20.
  • 28. Livesu, M. ve diğ.(2017) From 3D Models to 3D Prints: An Overview of the Processing Pipeline, Computer Graphics Forum, Wiley Online Library, 537–64. doi.org/10.1111/cgf.13147
  • 29. Ma, G. ve diğ. (2018) State-of-the-Art of 3D Printing Technology of Cementitious Material An Emerging Technique for Construction, Science China Technological Sciences, 61(4), 475–95. doi.org/10.1007/s11431-016-9077-7
  • 30. Mania A. ve diğ. (2017) Dbt-Digital Building Technologies Deep Facade, Erişim Adresi: http://dbt.arch.ethz.ch/project/digital-metal-deep-facade/ Erişim Tarihi:02.06.2020.
  • 31. Mathur, R. (2016) 3D Printing in Architecture, International Journal of Innovative Science, Engineering & Technology, 3(7), 583.
  • 32. Mohsen, A. (2016) Next Generation Printed Steel Knots, Erişim Adresi: https://facadeworld.com/2016/07/08/3f3dnext-generation-printed-steel-knots/ Erişim Tarihi:02.06.2020.
  • 33. Mungenast, M. Light In, Erişim Adresi: https://3dprint.com/187220/3d-printed-buildingfacades/ Erişim Tarihi:02.06.2020.
  • 34. MX3D, (2018). MX3D Printed Biridge, Erişim Adresi: https://mx3d.com/ Erişim Tarihi:02.06.2020.
  • 35. Oliveira, G. (2019). Accuracy and Precision of 3D Printed Dental ModelsProduced by Different Additive Manufacturing Technologies, PhD Thesis, University of North Carolina,Chapel Hill.
  • 36. Oxman, N. ve diğ. (2014) Towards Robotic Swarm Printing, Architectural Design, 84(3), 108–15. doi.org/10.1002/ad.1764
  • 37. Özer,G. (2020) ‘Eklemeli Üretim Teknolojileri Üzerine Bir Derleme, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 9(1), 606–621. doi.org/10.28948/ngumuh.626011
  • 38. Pollard, M. (2018). Additive Manufacturing for Compsoite Fabrication: A Study on the Porosity Reduction of Printed Components for Tooling Applications, Master Thesis, Florida Agricultural and Mechanical University, Tallahassee.
  • 39. Rael, R. ve diğ. (2011) Developing Concrete Polymer Building Components for 3D Printing, Computer Aided Design in Architecture,157.
  • 40. Rahman, Z. ve diğ. (2018) Additive Manufacturing with 3D Printing: Progress from Bench to Bedside, The AAPS journal, 20(6), 101.doi:10.1208/s12248-018-0225-6
  • 41. Reed, N. (2019). MuDD Architects Uses Drone Spraying to Build ‘terramia’ Housing Prototypes, Erişim Adresi: https://www.designboom.com/technology/mudd-architectsdrone-spraying-terramia-milan-design-week-05-30-2019/ Erişim Tarihi:02.06.2020.
  • 42. Richardson, A. (2019). 3D Printing Energy-Efficient Facades, Erişim Adresi: https://aquicore.com/blog/3d-printing-energy-efficient-facades/ Erişim Tarihi:02.06.2020.
  • 43. S. Lim, R. A. ve diğ. (2012) Developments in construction-scale additive manufacturing processes, Autom. Constr., vol. 21, 262–268. doi.org/10.1016/j.autcon.2011.06.010
  • 44. SanJose (2019) 3D Concrete Printing Market: Growing Interest in Green Construction Has Increased the Demand, Erişim Adresi: http://www.credenceturbine.com/3d-concreteprinting-market-growing-interest-in-green-construction-has-increased-the-demand/ Erişim Tarihi:02.06.2020.
  • 45. Sarakinioti, M. ve diğ. (2018) Development and Prototyping of an Integrated 3D-Printed Façade for Thermal Regulation in Complex Geometries, Journal of Facade Design and Engineering, 6(2), 29–40. doi.org/10.7480/jfde.2018.2.2081
  • 46. Sarakinioti, M. ve.diğ. (2017) Spong3d: 3D Printed Facade System Enabling Movable Fluid Heat Storage, Spool, 4(2), 57–60. doi.org/10.7480/spool.2017.2.1929
  • 47. Savytskyi, M. ve diğ. (2016) 3D-Printing of Build Objects, Вісник Придніпровської державної академії будівництва та архітектури, (3 (216)).
  • 48. Schipper, R. ve diğ. (2017) Double Curved Concrete Printing: Printing on Non-Planar S
  • 49. Sher, D. (2019). One-to-One with Enrico Dini, the Italian Who Invented Binder Jetting for Construction. Erişim Adresi: https://www.3dprintingmedia.network/one-to-one-with-enricodini-the-italian-who-invented-binder-jetting-for-constructions/ Erişim Tarihi:02.06.2020.
  • 50. Strauss H. (2013) AM Envelope: The Potential of Additive Manufacturing for facade constructions, vol. 1, TU Delft.
  • 51. Strauss, H. (2008). Rapid Prototyping in Facades, Erişim Adresi: https://facadeworld.com/2014/01/12/rapid-prototyping-in-facades/ Erişim Tarihi:02.06.2020.
  • 52. Strauss, H. ve diğ. (2015) Additive Manufacturing for Future Facades: The Potential of 3D Printed Parts for the Building Envelope, Journal of Facade Design and Engineering, 3(3–4), 225–35.doi: 10.3233/FDE-150042
  • 53. Valamanesh, R. (2012). Design Inspired by Digital Fabrication, Master Thesis, Arizona State University.
  • 54. Varotsis, A. (2020). Introduction to Binder Jetting 3D Printing, Erişim Adresi: https://www.3dhubs.com/knowledge-base/introduction-binder-jetting-3d-printing/#what Erişim Tarihi:02.06.2020.
  • 55. Wasp (2016). Giant 3d Printer for Building 3d Printed House, Erişim Adresi: https://www.3dwasp.com/en/3d-printing-architecture/ Erişim Tarihi:02.06.2020.
  • 56. What Is Direct Energy Deposition, Erişim Adresi: https://engineeringproductdesign.com/knowledge-base/direct-energy-deposition/ Erişim Tarihi:02.06.2020.
  • 57. Wohlers, T. ve Gornet T. (2014) History of Additive Manufacturing, Wohlers report 24, 118.
  • 58. Wong, K. ve Hernandez A. (2012) A Review of Additive Manufacturing, ISRN Mechanical Engineering, 4–5. doi.org/10.5402/2012/208760
  • 59. Wroe, W. (2015) Improvements and Effects of Thermal History on Mechanical Properties for Polymer Selective Laser Sintering (SLS), Master Thesis, The University of Texas, Austin.
  • 60. Yalçın, B. ve Berkay E. (2017) Endüstride Yeni Eğilim Olan 3-d Eklemeli İmalat Yöntemi ve Metalurjisi, Uluslararası Teknolojik Bilimler Dergisi, 9(3), 65–88.
  • 61. Zolfaghari, A. (2018) Study on Multi Directional Additive Manufacturing, Master Thesis,Tennessee Technological University.
APA Caliskan C, Arpacıoğlu Ü (2020). YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. , 1117 - 1136. 10.17482/uumfd.696952
Chicago Caliskan Cemal Irfan,Arpacıoğlu Ümit YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. (2020): 1117 - 1136. 10.17482/uumfd.696952
MLA Caliskan Cemal Irfan,Arpacıoğlu Ümit YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. , 2020, ss.1117 - 1136. 10.17482/uumfd.696952
AMA Caliskan C,Arpacıoğlu Ü YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. . 2020; 1117 - 1136. 10.17482/uumfd.696952
Vancouver Caliskan C,Arpacıoğlu Ü YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. . 2020; 1117 - 1136. 10.17482/uumfd.696952
IEEE Caliskan C,Arpacıoğlu Ü "YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ." , ss.1117 - 1136, 2020. 10.17482/uumfd.696952
ISNAD Caliskan, Cemal Irfan - Arpacıoğlu, Ümit. "YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ". (2020), 1117-1136. https://doi.org/10.17482/uumfd.696952
APA Caliskan C, Arpacıoğlu Ü (2020). YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(2), 1117 - 1136. 10.17482/uumfd.696952
Chicago Caliskan Cemal Irfan,Arpacıoğlu Ümit YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25, no.2 (2020): 1117 - 1136. 10.17482/uumfd.696952
MLA Caliskan Cemal Irfan,Arpacıoğlu Ümit YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol.25, no.2, 2020, ss.1117 - 1136. 10.17482/uumfd.696952
AMA Caliskan C,Arpacıoğlu Ü YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2020; 25(2): 1117 - 1136. 10.17482/uumfd.696952
Vancouver Caliskan C,Arpacıoğlu Ü YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2020; 25(2): 1117 - 1136. 10.17482/uumfd.696952
IEEE Caliskan C,Arpacıoğlu Ü "YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ." Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25, ss.1117 - 1136, 2020. 10.17482/uumfd.696952
ISNAD Caliskan, Cemal Irfan - Arpacıoğlu, Ümit. "YAPI ÜRETİMİNDE EKLEMELİ İMALAT TEKNOLOJİLERİNİN KARŞILAŞTIRMALI DEĞERLENDİRMESİ". Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 25/2 (2020), 1117-1136. https://doi.org/10.17482/uumfd.696952