Yıl: 2020 Cilt: 11 Sayı: 1 Sayfa Aralığı: 65 - 70 Metin Dili: İngilizce DOI: 10.22312/sdusbed.634657 İndeks Tarihi: 06-05-2021

Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic

Öz:
Objective: The most common cause of clinical failuresin all-ceramic dental restorations is crack formation in theveneering ceramic. The aim of this study was to determinewhether graphene doping would change the characteristics ofhardness and discoloration of the ceramic veneer surface.Material-Method: Thirty disk-shaped cores (10 mm indiameter and 0.8 mm in thickness) were prepared. Threedifferent ceramic systems, IPS Empress (E) (Ivoclar Vivadent,Schaan, Liechtenstein), IPS e.max Press (EP) (IvoclarVivadent, Schaan, Liechtenstein), and Turkom Cera (TC)(Turcom-Ceramic SDN-BHD, Kuala Lumpur, Malaysia)were tested, each with n=10. The Vickers hardness andcolor difference (ΔE) values were measured before and afterdoping with graphene. Surface analysis was performed withXRD, XPS, and SEM. The Wilcoxon signed-rank test wasperformed to compare hardness values. The Kruskal-Wallistest was performed to compare ∆E values among all groups.The Kruskal-Wallis one-way ANOVA was used for the posthoc tests after the Kruskal-Wallis test (α=0.05).Results: A significant difference was found among thegroups and the mean values of ∆E (p=0.002). According tothe post hoc test results, this difference was found betweenTC and E groups (p=0.002). Although graphene dopingincreased hardness significantly in group E, it was also foundto decrease in group TC. The mean ∆E values indicatedclinically noticeable (over the limit of 3.7) color change inall groups.Conclusions: Graphene doping may change the surfacehardness of dental ceramics depending on the content of theceramic. Similarly, depending on the content of the ceramic,it may affect its color to varying degrees. Graphene dopingincreased surface hardness only in group E but negativelyaffected the color of ceramic. Its application could be usefulin the palatal region.
Anahtar Kelime:

Doping Yöntemi ile İnce Bir Tabaka Grafen Uygulamasının Dental Seramiklerin Rengine ve Sertliğine Etkisi

Öz:
Amaç: Tam seramik dental restorasyonlarda klinik başarısızlıkların en sık nedeni veneer seramiklerinde çatlak oluşumudur. Bu çalışmanın amacı, grafen dopingin seramik kaplama yüzeyinin sertlik ve renk bozulma özelliklerini değiştirip değiştirmeyeceğini belirlemektir. Materyal-Metot: Otuz adet disk şeklinde örnek (10 mm çapında ve 0.8 mm kalınlığında) hazırlandı. Üç farklı seramik system kullanıldı, IPS Empress (E) (Ivoclar Vivadent, Schaan, Lihtenştayn), IPS e.max Press (EP) (Ivoclar Vivadent, Schaan, Lihtenştayn) ve Turkom Cera (TC) (Turcom-Seramik SDNBHD, Kuala Lumpur, Malezya), her birinden (n=10) adet test edildi. Vickers sertliği ve renk farkı (ΔE) değerleri grafen doping öncesi ve sonrasında ölçüldü. Yüzey analizi, XRD, XPS ve SEM ile yapıldı. Sertlik değerlerini karşılaştırmak için Wilcoxon signed-rank testi uygulandı. Tüm gruplar arasında ∆E değerlerini karşılaştırmak için Kruskal-Wallis testi uygulandı. Kruskal-Wallis sonrası post hoc testlerinden Kruskal Wallis tek yönlü ANOVA kullanıldı (α=0,05). Bulgular: Gruplar arasında ve ∆E'nin ortalama değerleri arasında anlamlı bir fark bulundu (p=0,002). Post-hoc test sonuçlarına göre, bu fark TC ve E grupları arasında bulundu (p=0,002). Her ne kadar grafen doping E grubunda sertliği anlamlı olarak arttırsa da, TC'de de azaldığı bulundu. Ortalama ∆E değerleri, tüm gruplarda klinik olarak belirgin (3,7 sınırın üzerinde) renk değişikliğini göstermiştir. Sonuç: Grafen doping, seramiklerin içeriğine bağlı olarak dental seramiklerin yüzey sertliğini değiştirebilir. Benzer şekilde, seramik içeriğine bağlı olarak, rengini değişen derecelerde etkileyebilir. Grafen doping, yalnızca E grubunda yüzey sertliğini arttırdı, ancak seramiğin rengini olumsuz yönde etkiledi. Palatal bölgede kullanımı faydalı olabilir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Wall JG, Cipra DL. Alternative crown systems. Is the metal-ceramic crown always the restoration of choice? Dent Clin North Am 1992; 36: 765-82.
  • 2. Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent 2007; 98: 389-404.
  • 3. Dündar M, Özcan M, Gökçe B, Çömlekoğlu E, Leite F, Valandro LF. Comparison of two bond strength testing methodologies for bilayered all-ceramics. Dent Mater 2007; 23: 630-636.
  • 4. Della Bona A, Kelly JR. The clinical success of all-ceramic restorations. J Am Dent Assoc 2008; 139: 8-13.
  • 5. Yin H, Qi HJ, Fan F, Zhu T, Wang B, Wei Y. Griffith criterion for brittle fracture in graphene. Nano Lett 2015; 15: 1918-1924.
  • 6. Jang D, Meza L.R, Greer F, Greer J.R. Fabrication and deformation of three -dimensional hollow ceramic nanostructures. Nat Mater 2013; 12: 893-898.
  • 7. Zhao G, Huang C, Liu H, Zou B, Zhu H, Wang J. A study on in-situ synthesis of TiB2–SiC ceramic composites by reactive hot pressing. Ceram Int 2014; 40: 2305-2313.
  • 8. Wang G, Lu Z, Zreiqat H. Bioceramics for skeletal bone regeneration, in: K. Mallick (Ed.), Bone Substitute Biomaterials, Woodhead Publishing, 2014, pp. 180-216.
  • 9. Yatongchai C, Placek L.M, Curran D.J, Towler M.R, Wren A.W. Investigating the addition of SiO2–CaO–ZnO–Na2O– TiO2 bioactive glass to hydroxyapatite: characterization, mechanical properties and bioactivity. J. Biomater Appl 2015; 30: 495-511.
  • 10. Gao C, Feng P, Peng S, Shuai C. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 2017 ;61: 1-20.
  • 11. Zhang L, Zhang X, Chen Y, Su J, Liu W, Zhang T, Qi F, Wang Y. Interfacial stress transfer in a graphene nanosheet toughened hydroxyapatite composite. Appl Phys Lett 2014; 105: 161908.
  • 12. Xie H, Cao T, Rodríguez-Lozano FJ, Luong-Van EK, Rosa V. Graphene for the development of the next-generation of biocomposites for dental and medical applications. Dent Mater. 2017; 33:765-774.
  • 13. Zhang L, Liu W, Yue C, Zhang T, Li P, Xing Z, Chen Y. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 2013; 61: 105- 115.
  • 14. Yang K, Zhang S, Zhang G, Sun X, Lee S.T, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 2010; 10 : 3318-3323.
  • 15. Wojtoniszak M, Chen X, Kalenczuk R.J, Wajda A, Łapczuk J, Kurzewski M et al. Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids Surf B 2012; 89: 79–85.
  • 16. Inam F, Vo T, Bhat B.R. Structural stability studies of graphene in sintered ceramic nanocomposites. Ceram Int 2014; 40: 16227-16233.
  • 17. Azhari A, Toyserkani E, Villain C. Additive manufacturing of graphenehydroxyapatite nanocomposite structures, Int J Appl Ceram Technol 2015; 12: 8-17.
  • 18. Bayindir F, Gozalo-Diaz D, Kim-Pusateri S, Wee AG. Incisal translucency of vital natural unrestored teeth: a clinical study. J Esthet Restor Dent 2012; 24: 335-343.
  • 19. Lim HN, Yu B, Lee YK. Spectroradiometric and spectrophotometric translucency of ceramic materials. J Prosthet Dent 2010; 104: 239-246.
  • 20. Wee AG, Monaghan P, Johnston WM. Variation in color between intended matched shade and fabricated shade of dental porcelain. J Prosthet Dent 2002; 87: 657-666.
  • 21. Seghi RR, Hewlett ER, Kim J. Visual and instrumental colorimetric assessments of small color differences on translucent dental porcelain. J Dent Res 1989; 68: 1760-1764.
  • 22. O'Brien WJ, Groh CL, Boenke KM. A new, small-colordifference equation for dental shades. J Dent Res 1990; 69: 1762-1764.
  • 23. Fontes ST, Fernández MR, de Moura CM, Meireles SS. Color stability of a nanofill composite: effect of different immersion media. J Appl Oral Sci 2009; 17: 388-391.
  • 24. ASTM C1327-08 Standart test method for Vickers indentation hardness of advanced ceramcis. ASTM International; 2009.
  • 25. Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D et al. A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chem Eng J 2017; 313: 487-497.
  • 26. Çömlekoğlu E, Güngör A, Dündar M, Özcan M, Gökçe B, Artunç C. Güçlendirilmiş dental seramiklerin vickers sertlikleri ve yük altında kırılma davranışları. Cumhuriyet üniv Derg 2009; 12: 119-123
  • 27. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of allceramic materials. Part I. Pressable and alumina glassinfiltrated ceramics. Dent Mater 2004; 20: 441-8.
  • 28. Rizkalla AS, Jones DW. Indentation fracture toughness and dynamic elastic moduli for commercial feldspathic dental porcelain materials. Dent Mater 2004; 20: 198-206.
  • 29. Anusavice KJ, Kakar K, Ferree N. Which mechanical and physical testing methods are relevant for predicting the clinical performance of ceramic-based dental prostheses? Clin Oral Implants Res 2007; 18: 218-31.
  • 30. Kelly RJ. Clinically relevant approach to failure testing of allceramic restorations. J Prosthet Dent 1999; 81: 652-61.
  • 31. Taskonak B, Mecholsky JJ Jr, Anusavice KJ. Fracture surface analysis of clinically failed fixed partial dentures. J Dent Res 2006; 85: 277-81.
  • 32. Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D et al. A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chem Eng J 2017; 313: 487-497.
  • 33. Ye Y, Graupner U, Krüger R. Deposition of hexagonal boron nitride from N- Trimethylborazine (TMB) for continuous CVD coating of SiBNC fibers. Chemical vapor deposition 2012; 18: 7-9
  • 34. Mallick K. Bone Substitute Biomaterials. 1 st ed. United Kingdom: Woodhead Publishing; 2014. pp. 180–216.
  • 35. Shuai C, Feng P, Wu P, Liu Y, Liu X, Lai D et al. A combined nanostructure constructed by graphene and boron nitride nanotubes reinforces ceramic scaffolds. Chem Eng J 2017; 313: 487-497.
  • 36. Ciofani VR, Menciassi A, Cuschieri A. Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 2008; 101: 850-858.
  • 37. Charlton DG, Roberts HW, Tiba A. Measurement of select physical and mechanical properties of 3 machinable ceramic materials. Quintessence Int 2008; 39: 573-579.
  • 38. Oh WS, Delong R, Anusavice KJ. Factors affecting enamel and ceramic wear: a literature review. J Prosthet Dent 2002; 87: 451-459.
  • 39. Jiang L Fitzgeral A.G, Rose MJ, Lousa A, Gimeno S. Formation of Cubic Boron Nitride by RF magnetron Sputtering. Surf interface Anal 2002; 34: 732-734.
  • 40. Goyal K, Singh H, Bhatia R. Experimental investigations of carbon nanotubes reinforcement on properties of ceramicbased composite coating. Journal of the Australian Ceramic Society 2019; 55: 315-322.
  • 41. Gao C, Feng P, Peng S, Shuai C. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomater 2017; 61: 1-20.
  • 42. Wang CH, Liu YS, Zhao MX, Ye F, Cheng LF. Effects of upgrading temperature on electromagnetic shielding properties of three-dimensional graphene/SiBCN/SiC ceramic composites. Ceramics International 2019; 45: 21278-21285.
APA kul e, BAYINDIR F (2020). Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. , 65 - 70. 10.22312/sdusbed.634657
Chicago kul esra,BAYINDIR FUNDA Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. (2020): 65 - 70. 10.22312/sdusbed.634657
MLA kul esra,BAYINDIR FUNDA Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. , 2020, ss.65 - 70. 10.22312/sdusbed.634657
AMA kul e,BAYINDIR F Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. . 2020; 65 - 70. 10.22312/sdusbed.634657
Vancouver kul e,BAYINDIR F Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. . 2020; 65 - 70. 10.22312/sdusbed.634657
IEEE kul e,BAYINDIR F "Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic." , ss.65 - 70, 2020. 10.22312/sdusbed.634657
ISNAD kul, esra - BAYINDIR, FUNDA. "Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic". (2020), 65-70. https://doi.org/10.22312/sdusbed.634657
APA kul e, BAYINDIR F (2020). Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 11(1), 65 - 70. 10.22312/sdusbed.634657
Chicago kul esra,BAYINDIR FUNDA Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi 11, no.1 (2020): 65 - 70. 10.22312/sdusbed.634657
MLA kul esra,BAYINDIR FUNDA Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, vol.11, no.1, 2020, ss.65 - 70. 10.22312/sdusbed.634657
AMA kul e,BAYINDIR F Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2020; 11(1): 65 - 70. 10.22312/sdusbed.634657
Vancouver kul e,BAYINDIR F Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi. 2020; 11(1): 65 - 70. 10.22312/sdusbed.634657
IEEE kul e,BAYINDIR F "Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic." Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 11, ss.65 - 70, 2020. 10.22312/sdusbed.634657
ISNAD kul, esra - BAYINDIR, FUNDA. "Effect of Thin-Layer Graphene Doping on The Color and Surface Hardness of Dental Ceramic". Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi 11/1 (2020), 65-70. https://doi.org/10.22312/sdusbed.634657